Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      128 089
      Effect-directed profiling of 32 vanilla products, characterization of multi-potent compounds and quantification of vanillin and ethylvanillin
      Gertrud E. MORLOCK*, M. BUSSO, S. TOMEBA, A. SIGHICELLI (*Institute of Nutritional Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany;

      J Chromatogr. A, 1652, 462377 (2021). Samples were vanilla tinctures, water − ethanol − ethyl acetate 1:1:1 extracts of vanilla-flavored food products and of natural Vanilla sp. (Orchidaceae) pods, oleoresin, paste and powders, as well as calibration standards of vanillin (1) and ethylvanillin (2). HPTLC on silica gel with n-hexane – ethyl acetate 1:1 for profiling, 3:2 for quantification. Other mobile phases were also tested and given in the supplement. Compounds (1) and (2) (hRF 68 and 82, respectively) were quantified by absorbance densitometry (at maximal wavelength 310 nm, deuterium lamp, scanning speed 10mm/s). Contents were found to be between 1 μg/g and 36 mg/g for (1) and null for (2) except in one tincture (62 µg/mL). Derivatizations performed for five assays: A) to detect radical scavengers, immersion (speed 3 cm/s, time 5 s) into DPPH• (0.5 mM in methanol), followed by drying for 90 s at room temperature and 30 s at 60 °C; B) to detect activity against Gram-negative bacteria, immersion (speed 2 cm/s, time 3 s) into Aliivibrio fischeri suspension, followed by recording the bioluminescence; C) to detect activity against Gram-positive bacteria, immersion (speed 3.5 cm/s, time 6 s) into Bacillus subtilis, followed by incubation 2 h at 37 °C, immersion in MTT solution, incubation for 30 min at 37 °C and heating for 5 min at 50 °C; D) to detect acetylcholinesterase (AChE) inhibitors, immersion (speed 2.5 cm/s, time 2 s) into AChE solution (666 units in TRIS buffer 0.05M, with bovine serum albumin 0.1 %, pH 7.8), incubation for 25 min at 37 °C and immersion into substrate solution (α-naphthyl acetate 0.1 % and Fast Blue salt B 0.18 % in ethanol – water, 1:2; E) to detect tyrosinase inhibitors, spraying with enzyme solution (400 unit/mL, in phosphate buffer 0.02 M, pH 6.8), followed by 2 min drying, immersion into substrate levodopa (18 mM in phosphate buffer, pH 6.8), 10 min incubation at room temperature and drying. For identification, zones of interest were transferred with methanol from underivatized HPTLC layer through a TLC-MS interface and a filter frit directly to a Quadrupole-Orbitrap MS (heated electrospray ionization, probe heater at 270°C, spray voltage 3.5kV, lock masses acetic acid for negative, dibutyl phthalate for positive ionization, mode full HR-MS scan in m/z range 50–750). Afterwards, the following substances assigned by MS were confirmed by using HPTLC comparison with standards: (1) and (2), vanillyl alcohol, vanillic acid, ethyl vanillyl ether, coumarin, 4-hydroxybenzoic acid, 4-methoxybenzoic acid, 4-hydroxybenzaldehyde, 4-allyl benzoic acid, oleamide, triacetin.

      Classification: 4e, 7, 8b, 32e
      128 034
      Quantification of gymnemagenin and β-sitosterol in marketed herbal formulation by validated normal phase HPTLC method
      S.E. POTAWALE, S.Y. GABHE*, K.R. MAHADIK (*Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India;

      Chromatography Research International 2014, 626801 (2014). HPTLC of extracts of Gymnema sylvestre (Apocynaceae) in tablets, as well as standards for calibration, on silica gel (prewashed with methanol and activated at 120°C for 15 min) with toluene – ethyl acetate – methanol 65:25:14. Derivatization by immersing into sulfuric acid (5 % in methanol) and heating at 110°C for 4 min. Densitometric evaluation within 25 min in absorbance mode at 423 nm, which was the optimal wavelength for quantifying simultaneously the triterpenoid gymnemagenin (hRF 27, linearity range 100–1200 ng/band, LOD 32 ng/band, LOQ 53 ng/band) and β-sitosterol (hRF 78, linearity range 200–1200 ng/band, LOD 97 ng/band, LOQ 159 ng/band). Interday and intra-day precisions as well as recovery rates provided relative deviation values below 1 %. This method was used to determine the analyte contents in the tablets (0.041 % gymnemagenin and 0.138 % β-sitosterol), as well as to confirm the stability of the analytes in solution at room temperature after 48h.   

      Classification: 15, 32e
      128 048
      Cholestasis impairs hepatic lipid storage via AMPK and CREB signaling in hepatitis B virus surface protein transgenic mice
      K. IRUNGBAM, M. RODERFELD, H. GLIMM, F. HEMPEL, F. SCHNEIDER, L. HEHR, D. GLEBE, Y. CHURIN, G. MORLOCK, I. YÜCE, Elke ROEB* (*Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany;

      Nature - Lab. Invest. 100, 1411–1424 (2020). Samples were chloroform – methanol 1:1 solutions of lipid standards and of liver tissue extracts from wild-type mice (1), from transgenic murine models of hepatic steatosis (2) (mice expressing HBs, hepatitis B virus surface protein), or of cholestasis (3) (mice totally knock-out for the gene of phospholipid translocator ABCB4, ATP-binding cassette subfamily B member 4), or of both (4) (hybrids of mice (2) and (3)). HPTLC on silica gel (preheated at 110°C for 15 min) with n-hexane – diethyl ether – acetic acid 20:5:1. (A) For qualitative analysis, visualization under white light after immersion into anisaldehyde 0.5 % (in sulfuric acid – acetic acid – methanol, 1:2:17), followed by heating at 110°C for 9 min. (B) Identification of lipids was confirmed by elution of the zones of interest with methanol from the HPTLC layer through a TLC-MS interface and a filter frit directly to a quadrupole-orbitrap MS (atmospheric pressure chemical ionization, full HR-MS scan in m/z range 100–1000). (C) For quantitative analysis, visualization at UV 366 nm after derivatization by immersion into primuline reagent (primuline 0.5 g/L in acetone – water 4:1); fluorescence was measured at UV 366 nm (mercury lamp, optical filter for wavelengths above 400 nm, scanning slit 6.0 mm × 0.2 mm, speed 20 mm/s). (A) and (B) allowed the separation and detection of cholesterol, cholesteryl oleate, methyl oleate, free fatty acids (FFA, expressed as oleic acid equivalents) and triacylglycerols (TAG, as triolein equivalents) in liver extracts. (C) showed that TAG was decreased and FFA increased in (3) and (4), compared to (1) and (2). Cholesterol and cholesteryl oleate had no significant changes between groups.

      Classification: 4e, 11a, 11c, 13c
      128 092
      Honeybee colonies compensate for pesticide-induced effects on royal jelly composition and brood survival with increased brood production
      M. SCHOTT, M. SANDMANN, J.E. CRESSWELL, M.A. BECHER, G. EICHNER, D.T. BRANDT, R. HALITSCHKE, S. KRUEGER, G. MORLOCK, R.-A. DÜRING, A. VILCINSKAS, M.D. MEIXNER, R. BÜCHLER, Annely BRANDT* (*LLH Bee Institute, Landesbetrieb Landwirtschaft Hessen, Kirchhain, Germany;

      Nature - Sci. Rep. 11, 62 (2021). Samples were isopropylacetate – methanol 3:2 fractions of (1) n-hexane extracts of larvae of Apis mellifica carnica (Apidae) from hives exposed to different concentrations of neonicotinoid pesticide clothianidin in their food, as well as (2) worker jelly adsorbed from brood combs of the same hives on adsorptive filter strips (unused filter strip parts were kept as background control). HPTLC on silica gel with chloroform – methanol – water – ammonia 30:17:2:1 for (1), and with an 8-step gradient based on methanol, chloroform, toluene, and n-hexane for (2, see CBS 105: Optimization of an AMD 2 method for determination of stratum corneum lipids). Visualization at UV 366 nm before and after derivatization by immersion into primuline reagent (primuline 0.5 g/L in acetone – water 4:1). Furthermore, antibacterial activity of (2) was assessed by recording the bioluminescence on the HPTLC plates, neutralized after elution and immersed into Aliivibrio fischeri suspension. Semi-quantitative comparison showed that a higher exposure to clothianidin was correlated with a decrease in lipid composition as well as in antibacterial activity.

      Classification: 11, 37
      128 056
      A validated quantification of gallic acid and ellagic acid in Triphala using a high‑performance thin‑layer chromatography method
      R. PALLAVI*, S. JHA (*Department of Pharmaceutical Sciences, Birla Institute of Technology, Ranchi, Jharkhand, India,

      J. Planar Chromatogr. 34, 447-453 (2021). HPTLC of gallic acid (1) and ellagic acid (2) in Triphala on silica gel with toluene - ethyl acetate - formic acid - methanol 15:15:5:1. Quantitative determination by absorbance measurement at 254 nm. The hRF values for (1) and (2) were 35 and 28, respectively. Linearity was between 200 and 2000 ng/zone for (1) and 50 and 400 ng/zone for (2). LOD and LOQ were 200 and 606 ng/zone for (1) and 50 and 151 ng/zone for (2), respectively. Intermediate precisions were below 2 % (n=3). Average recovery was 98.6 % for (1) and 99.1 % for (2).

      Classification: 7
      128 057
      Greenness assessment of a stability indicating simple inexpensive high‑performance thin‑layer chromatography–dual wavelength method for simultaneous determination of mometasone furoate and salicylic acid in complex matrix using analytical eco‑scale
      A. EL-YAZBI*, F. ABOUKHALIL, E. KHAMIS, R. YOUSSEF, M. EL-SAYED (*Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,

      J. Planar Chromatogr. 34, 455-466 (2021). HPTLC of mometasone furoate (1) and salicylic acid (2) on silica gel with chloroform - ethanol 9:1. Quantitative determination by absorbance measurement at 250 nm for (1) and 300 nm for (2). The hRF values for (1) and (2) were 13 and 93, respectively. Linearity was between 100 and 1600 ng/zone for (1) and 400 and 5000 ng/zone for (2). LOD and LOQ were 16 and 47 ng/zone for (1) and 7 and 20 ng/zone for (2), respectively. Intermediate precisions were below 2 %. Recovery was between 98 and 102 %.

      Classification: 32a
      128 004
      Validation and application of a protocol for the extraction and quantitative analysis of sphingomyelin in erythrocyte membranes of patients with non‑alcoholic fatty liver disease
      C. PAPADOPOULOS, K. MIMIDIS, I. TENTES, T. TENTE, K. ANAGNOSTOPOULOS* (*Laboratory of Biochemistry, Department of Medicine, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece,;

      J. Planar Chromatogr. 34, 411-418 (2021). HPTLC of sphingomyelin in erythrocyte membranes of patients on silica gel with chloroform - methanol - acetic acid - water 60:50:1:4. Detection by exposure to iodine vapor for 30 min. Quantitative determination by densitometric measurement of the intensity of individual zones and the red, green and blue values of the component colors. The hRF value for sphingomyelin was 86. Linearity was between 0.25 and 10 μg/zone. LOD and LOQ were 140 and 410 ng/zone, respectively. Intermediate precisions were below 2 % (n=3). Recovery was between 85 and 97 %.

      Classification: 11c
      128 060
      A validated high‑performance thin‑layer chromatography method for the determination of two bioactive lignans, phyllanthin and hypophyllanthin, in the seasonal variation study of Phyllanthus amarus
      S. KHATOON*, S. IRSHAD (*Pharmacognosy Division, CSIR-National Botanical Research Institute, Post Box No. 436, Rana Pratap Marg, Lucknow 226001, India,

      J. Planar Chromatogr. 34, 427-435 (2021). HPTLC of phyllanthin (1) and hypophyllanthin (2) in Phyllanthus amarus on silica gel with toluene - ethyl acetate 17:3. Quantitative determination by absorbance measurement at 254 nm. The hRF values for (1) and (2) were 21 and 35, respectively. Linearity was between 2 ans 7 μg/zone for (1) and (2). LOD and LOQ were 1 and 3 μg/zone for (1) and (2), respectively. Intermediate precisions were below 2 % (n=3).

      Classification: 7