Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. The saved items can be printed to PDF using the print function of your web browser.

Page
      123 050
      Direct bioautography hyphenated to direct analysis in real time mass spectrometry: Chromatographic separation, bioassay and mass spectra, all in the same sample run
      T. T. HÄBE, Maryam JAMSHIDI-AIDJI, Jennifer MACHO, Gertrud E. MORLOCK* (*Chair of Food Sci., Inst. of Nutrit. Sci., and Interdiscipl. Res. Center (iFZ), Justus Liebig Univ. Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany, Gertrud.Morlock@uni-giessen.de)

      J. Chromatogr. A 1568, 188-196 (2018). Application of an advantageous combination, the desorption-based direct analysis in real time mass spectrometry (DART-MS) immediately after direct bioautography (DB), i.e., in the presence of microorganisms, bioassay medium and substrate reagent. The method offers a straightforward and efficient mass spectrometric detection of bioactive analytes within the bioautogram. It discriminated microorganism cells and highly polar bioassay medium ingredients which could otherwise stress the MS system. Investigation of DB-DART-MS for bioactive compounds in cosmetics using the Bacillus subtilis and Aliivibrio fischeri bioassays for detection of Gram-positive and Gram-negative antimicrobials, respectively, and the planar yeast estrogen screen for detection of estrogen-effective compounds. Study of the influences of three different bioassay matrices on the analyte response and DB-DART-MS performance on different layers (NP and RP) on the example of parabens in hand creams. Ion suppression was enhanced with increasing culture medium complexity. The mass spectrometric quantification by DB-DART-MS at the ng-level in situ each different bioautogram was verified by comparison to HPTLC-DART-MS. The total paraben content of hand creams 1 and 2 was 0.17–0.20% and 0.30–0.34%, respectively, depending on the method used. It proved that DB-DART-MS is a reliable qantitative bioanalytical hyphenation.

      Keywords: cosmetics HPTLC
      Classification: 4e
      123 002
      Review of thin layer chromatography in pesticide analysis: 2016-2018
      J. SHERMA, F. RABEL* (*ChromHELP, LLC, 136 Progress Ave., Woodbury, NJ 08096, USA, f.rabel@comcast.net)

      J. Liq. Chromatogr. Relat. Technol. 41, 1052-1065 (2019). Review of the following topics for the period of November 1, 2016 to November 1, 2018: sample preparation for TLC pesticide analysis; lipophilicity and retention studies for the study of biological activity; new reagents for pesticide detection; HPTLC-effect directed analysis on the surface of the layer; TLC-Raman spectrometry for the analysis of thiabendazole, triazophos, and phosmet residues; TLC analysis of radiolabeled pesticides; methods for the separation, detection, and qualitative and quantitative determination of pesticide residues; determination of pesticides in commercial products and the use of TLC for pesticide degradation studies. The review highlighted the isolation, characterization, and determination of less hazardous and less toxic biopesticides from plants, bacteria, fungi, and soil as the most active application area of pesticide TLC today.

      Classification: 1a, 29f
      123 003
      Antibacterial potential of the phenolics extracted from the Paulownia tomentosa L. leaves as studied with use of high-performance thin-layer chromatography combined with direct bioautography
      Agnes MORICZ*, P. OTT, Magdalena KNAS, Ewa DLUGOSZ, D. KRUZSELYI, Teresa KOWALSKA, M. SAJEWICZ (*Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. Street 15, 1022 Budapest, Hungary, moricz.agnes@agrar.mta.hu)

      J. Liq. Chromatogr. Relat. Technol. 42, 249-257 (2019). HPTLC of methanolic extracts from the leaves of Paulownia tomentosa on silica gel with chloroform - ethyl acetate - methanol 20:3:2. HPTLC-direct bioautography by dipping into B. subtilis cell suspension, followed by incubation at 28 °C for 2 h. Then the bioautograms were dipped into an aqueous solution of the MTT vital dye (1 mg/mL (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide), followed by incubation at 28 °C for 30 min. Further analysis by using a HPLC-DAD-MS system allowed the identification of apigenin and p-coumaric acid as highly abundant antibacterial components.

      Classification: 9, 11a
      123 004
      Application of analytical chemistry in the quality evaluation of Glycyrrhiza spp.
      J. CHEN (Chen Jia), F. WEI (Wei Feng), S. MA (Ma Shuang Cheng)* (*National Institute for Food and Drug Control, State Food and Drug Administration, 2 TiantanXili, Beijing, 10050, China, weifeng@nifdc.org.cn)

      J. Liq. Chromatogr. Relat. Technol. 42, 122-127 (2019). Review of the application of TLC and HPTLC for the analysis of Licorice, the dried root and rhizome of Glycyrrhiza uralensis Fisch., Glycyrrhiza inflate Bat., or Glycyrrhiza glabra L. The authors described methods using HPLC combined with HPLC fingerprint for rapid identification of species as well as methodologies for the analysis of glabridin on silica gel and RP-18.

      Classification: 1a
      123 005
      Thin-layer chromatography in medicinal chemistry
      Sandra SEGAN, D. OPSENICA, Dusanka OPSENICA* (*Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia, dusankam@chem.bg.ac.rs)

      J. Liq. Chromatogr. Relat. Technol. 42, 238-248 (2019). Review of recent applications of TLC in medicinal chemistry, including the determination of lipophilicity of biologically active compounds and its influence as activity descriptors of absorption, distribution, metabolism, elimination and toxicity. Practical applications of TLC as a fast screening technique in different stages of monitoring processes were also described, including systems recently used for stability studies of selected drugs.

      Classification: 1a, 32a
      123 007
      Effect-directed profiling of aqueous, fermented plant preparations via high-performance thin-layer chromatography combined with in situ assays and high-resolution mass spectrometry
      Maryam JAMSHIDI-AIDJI, Jennifer MACHO, Margit MUELLER, Gertrud MORLOCK* (*Institute of Nutritional Science, Interdisciplinary Research Center (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany, Gertrud.Morlock@uni-giessen.de )

      J. Liq. Chromatogr. Relat. Technol. 42, 266-273 (2019). HPTLC of aqueous, fermented plant preparations from Chamomilla recutita L. (1), Allium cepa L. (2), Equisetum arvense L. (3) and Hamamelis virginiana L. (4) of different harvest years on silica gel with ethyl acetate - toluene - formic acid - water 16:4:3:2. The method was combined with effect-directed analysis (EDA) and high-resolution mass spectrometry (HRMS). For α-/β-glucosidase assays, the plate was sprayed with 2 mL substrate solution (60 mg 2-naphthyl-α-D-glucopyranoside or 2-naphthyl-β-D-glucopyranoside in 50 mL ethanol), then sprayed with 1 mL sodium acetate buffer and 2 mL enzyme solution (500 units α-glucosidase), followed by incubation at 37 ºC for 10 min. Analysis of multi-potent compounds was also performed using the 2,2-diphenyl-1-picrylhydrazyl reagent and Gram-positive Bacillus subtilis assays, followed by recording of elution head-based HPTLC-ESI-HRMS spectra. 

       

      Classification: 4e
      123 009
      Equol determination in cattle manure by HPTLC-DART-TOF-MS
      V. PETERS, B. SPANGENBERG* (*Department of Process Engineering, University of Offenburg, Badstrasse 24, 77652 Offenburg, Germany, Spangenberg@HS-Offenburg.de)

      J. Liq. Chromatogr. Relat. Technol. 42, 311-316 (2019). HPTLC of equol in cattle manure with methyl t-butyl ether - cyclohexane 1:1. The plate was scanned with a Time of Flight – Direct Analysis in Real Time – Mass Spectrometry (TOF-DART-MS) system. The hRF value of equol was 71. The LOD and LOQ for equol were 2.4 µg/zone and 4.5 µg/zone, respectively. 

      Classification: 13b
      123 008
      HPTLC, HPTLC-MS/MS and HPTLC-DPPH methods for analyses of flavonoids and their antioxidant activity in Cyclanthera pedata leaves, fruits and dietary supplement
      Francesca ORSINI, Irena VOVK*, Vesna GLAVNIK, Urska JUG, D. CORRADINI (*Department of Food Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia, irena.vovk@ki.si)

      J. Liq. Chromatogr. Relat. Technol. 32, 41-46 (2019). HPTLC of flavonoids apigenin, luteolin, chrysin, myricetin, prunin (or naringenin 7-O-glucoside), nicotiflorin (or kaempferol 3-O-rutinoside), rutin (or quercetin 3-O-rutinoside), quercetin 3-O-glucopyranoside, luteolin 7-O-glucoside, isovitexin (or apigenin-6-C-glucoside), apigenin-7-O-glucoside, naringenin, hesperetin, flavone, kaempferide, kaempferol, naringin, hesperidin, quercetin dihydrate and quercetin in Caigua (Cyclanthera pedata Scrabs) on silica gel (1) or RP-18 (2) with ethyl acetate - water - formic acid 17:3:2 for (1) or 5 % formic acid in methanol - water 7:3 for (2). Detection by heating at 110 ºC, followed by dipping into Natural product reagent for 2 min. Qualitative identification under UV light at 254 nm and 366 nm. Flavonoids were further analyzed by HPTLC–MS/(MSn). 

      Classification: 8a
Page