Cumulative CAMAG Bibliography Service CCBS
Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.
The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:
- Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
- Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
- Keyword register: select an initial character and browse associated keywords
- Search by CBS edition: Select a CBS edition and find all related publications
Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.
Heliyon 9(2), e13469 (2023). Samples were methanolic extracts of different organs (bark, leaves, fruit pericarps, roots, twigs, seed coats and seedlings) of Dysoxylon binectariferum (= D. gotadhora = D. ficiforme, Meliaceae), as well as rohitukine (chromone piperidine alkaloid) isolated from a bark Soxhlet extract through column chromatography. TLC was used to monitor the purity of rohitukine isolation and to compare the fingerprints of the organ extracts. TLC on silica gel in 2 steps, successively with ethyl acetate – hexane 2:1, and with methanol – chloroform – dichloromethane 4:4:1. Visualization under UV 254 nm and 366 nm. Rohitukine (hRF 16) was very concentrated in bark, but present also in pericarps, leaves, twigs, seed coats and seedlings. (Editors note: Mobile phases and distribution of rohitukine were explained directly by the author (successive 2-step development, not biphasic system). The TLC figures did not show unequivocally the presence in roots, but it was confirmed by the author (and already quantified by other methods in doi.org/10.1371/journal.pone.0158099).
J Chromatogr A 1638, 461597 (2021). Samples were Isatis tinctoria (= I. indigotica) root extracts (Brassicaceae) and their fractions. Standards were oseltamivir acid (OA), a neuraminidase (NA) inhibitor; pinoresinol (PR, a lignan), β-sitosterol (SS, a sterol), and dihydro-neoascorbigen (DHNA, an alkaloid). HPTLC / TLC on silica gel with (1) petroleum ether – ethyl acetate – acetic acid 48:8:1 for petroleum ether extracts and SS, or 30:40:1 for ethyl acetate extracts, or 10:30:1 for PR; (2) with toluene – ethyl acetate – methanol – formic acid 16:3:1:2 or 10:4:1:2 also for ethyl acetate extracts and DHNA; (3) with n-butanol – acetic acid – water 25:4:3 for butanol extracts. OA was applied but not developed. RP-18, polyamide, cellulose, alumina layers were tested, but the resolution was lower. Derivatization by spraying with sulfuric acid (10 % in ethanol). Enzymatic assay by immersion of the plates into neuraminidase solution (6 U/mL), followed by 1 h incubation at 37 °C and by immersion into chromogenic substrate solution (1.75 mM 5-bromo-4-chloro-3-indolyl-α-D-N-acetylneuraminic acid). After 5 min, NA inhibitors were seen as white zones on blue background. The experiment was previously improved for the following parameters: incubation times, substrate and enzyme concentrations, followed by statistical evaluation and calculations using Box-Behnken design. Quantification by absorbance measurement (detection wavelength 605 nm, reference wavelength 420 nm). In optimal conditions, OA had LOD 300 ng/zone. Zones of interest on underivatized plates were directly submitted to MS, using EFISI (electrostatic-field-induced spray ionisation), as follows. Chromatograms were immersed 1–3 s into dimethicone – n-hexane 1:1 to form a hydrophobic film, and dried 30 min at room temperature; on the analyte spot, a hydrophilic droplet was formed with 5 µL methanol – water 1:1, extracting the analyte from the layer; the analyte was further attracted through a capillary tube (3–4 cm long, made of non-deactivated fused silica) under a strong electrostatic field, into the in-let orifice of the triple-quadrupole – linear ion-trap MS (induction voltage 4 kV; capillary voltage 40 V; tube lens voltage 100 V; capillary temperature 200 °C). Full-scan spectra were recorded in m/z range 50 – 1000, helium was used for collision-induced dissociation. 11 active compounds were identified in the extract: SS, 6 alkaloids (including cycloanthranilylproline, DHNA, hydroxy-indirubin, isatindigodiphindoside, isatindinoline A and), 3 lignans (including PR and isolariciresinol), 1 fatty acid (trihydroxy-octadecenoic acid).
Food Chem. 131846 (2022). HPTLC of Trifolium medium L. (1) and Trifolium pratense (2) on silica gel with dichloromethane - methanol - ethyl acetate 5:10:11:20 for (1) and chloroform - ethyl acetate 3:2 for (2). The AChE inhibitory activity of individual compounds was examined by spraying with 1) acetyl cholinesterase, followed by incubation at 37 °C for 20 min, 2) 2 mM acetylthiocholine solution and 3) 2 mM 5,5´-dithiobis-(2-nitrobenzoic acid) solution, and visualized after 20 min.
Marine Drugs 20(12), 757 (2022). Samples were ethyl acetate macerates and diethyl ether Soxhlet extracts from invasive Caulerpa cylindracea and non-invasive C. lentillifera (Caulerpaceae), as well as caulerpine (bisindole alkaloid) as standard isolated from one of the extracts. TLC on silica gel with petroleum ether – diethyl ether 1:1. Quantitative evaluation by densitometry at 330 nm, quantification of caulerpine (hRF 41, LOD 20 ng/zone, LOQ 68 ng/zone). The concentrations of caulerpine in C. cylindracea extracts (96-112 µg/g) were higher than in C. lentillifera (0-8 µg/g).
J Chromatogr A, 1625, 461230 (2020). Samples were extracts of Chinese plants: Acorus tatarinowii (= Acorus calamus var. angustatus) rhizomes (Araceae / Acoraceae) (1), Angelica sinensis roots (Apiaceae) (2), Gynura japonica rhizomes (Asteraceae) (3), Phellodendron chinense bark (Rutaceae) (4), Picrasma quassioides twigs and leaves (Simaroubaceae) (5), Rheum sp. roots and rhizomes (R. palmatum, R. tanguticum and/or R. officinale) (Polygonaceae) (6), Sophora flavescens roots (Fabaceae) (7), Dendrobium stems (D. aphyllum, D. aurantiacum var. dennaeanum, D. chrysanthum, D. chrysotoxum, D. gratiosissimum, D. hercoglossum, D. thyrsiflorum, D. trigonopus and D. williamsonii) (Orchidaceae) (8). Standards were: gigantol (from D. sonia); methoxycarbonyl-β-carboline (MCC from (5)); caffeic acid, emodin; senecionine and β-asarone; crategolic acid (= maslinic acid), corosolic acid, oleanic acid, ursolic acid; sesquiterpenoids (atractylenolides I – III) from Atractylodes macrocephala (Asteraceae); flavonoids (baicalein, baicalin, daidzin, hesperidin, wogonin) from Scutellaria baicalensis roots (Lamiaceae). HPTLC on silica gel with 10 mobile phases, depending on the samples. Detection under UV 254 nm and white light. For (3), derivatization with Dragendorff’s reagent (bismuth potassium iodide solution) for visualization of alkaloids. Zones of interest on underivatized plates were identified by a triple-quadrupole – linear ion-trap MS, the compounds being removed from the layer by a continuous-wave (445 nm) diode laser pointer through a DART interface (Direct Analysis in Real-Time, helium as gas for plasma-based ambient ionization, discharge needle voltage 1.5 kV, grid voltage 350 V, capillary temperature 300 °C and voltage 40 V, full scan in positive ionization mode in m/z range 150-800). Pigment standards were used for validation of this laser-assisted HPTLC-DART-MS method: malachite green, crystal violet, chrysoidin, auramine O, rhodamine B, Sudan red I – IV, Sudan red G, dimethyl yellow. Afterwards, the same HPTLC-MS method was applied to the origin / species determination of Dendrobium samples, based on the presence of four bibenzyl compounds erianin, gigantol, moscatilin, tristin. Erianin was present only in D. chrysotoxum, whereas none of these were detected in D. hercoglossum. Several components of the extracts were thus identified: asarone (a phenylpropanoid) in (1); phthalide lactones (butenylphthalide, ligustilide and chuanxiong lactone) in (2); co-eluting pyrrolizidine alkaloids (senecionine and seneciphylline) in (3); benzylisoquinoline alkaloid berberine in (4); alkaloids (canthinone alkaloids and MCC) in (5); anthraquinones (rhein, aloe-emodin, emodin, emodin methyl ether, chrysophanol) and (in negative mode) caffeic acid (a hydroxycinnamic acid) and corosolic, maslinic and oleanic acids (triterpenoids) in (6); quinolizidine alkaloids (matrine, oxymatrine, oxysophocarpine, sophoridine) in (7).
J Chromatogr A, 1625, 461230 (2020). Samples were methanolic extracts of commercial supplements containing Magnolia sp. bark (Magnoliaceae), as well as honokiol (1) and magnolol (2) (biphenyl neolignans) as separated or mixed standards. TLC and HPTLC on silica gel with n-hexane – ethyl acetate – ethanol 16:3:1. Visualization under UV 254 nm. Quantification of (1) and (2) by densitometric scanning in absorbance mode at 290 nm (hRF were 34 and 39, LOQ 200 ng and 280 ng/spot, respectively). Variability between samples from the same brand supplement was also determined, as well as extraction yields. Effect-directed analysis with 3 assays: A) to detect radical scavengers, immersion into DPPH• 0.02 % solution; B) to detect activity against Gram-negative bacteria, immersion into Aliivibrio fischeri suspension, followed by recording the bioluminescence; C) to detect activity against Gram-positive bacteria, immersion into Bacillus subtilis, followed by incubation 2 h at 28 °C and immersion into MTT 1 g/L. Compounds (1) and (2) were active in all assays. Identification of zones of interest by eluting with methanol from untreated TLC layer through the oval elution head of a TLC-MS interface directly to a single Quadrupole MS (electrospray ionization, interface temperature 350°C, heat block temperature 400°C, desolvation line temperature 250°C, detector voltage 4.5kV). Full mass scan spectra were recorded in the positive and negative ionization modes in m/z range 150–800. Other molecules (from other ingredients) were identified: piperine (alkaloid) and/or its geometrical isomers (active on A, hRF 29-30); and daidzein (active on A and B, hRF 18), isoflavone from Pueraria montana root (Fabaceae). Stability was assessed through 2D-HPTLC, by repeating the same development method in the orthogonal direction 4 h or 20 h after the first separation. Degradation products of (1) and (2) appeared after 20 h (but not at 4 h), including a honokiol dimer (formed in tracks of (1) and of (2)).
J Chromatogr A, 1624, 461239 (2020). Samples were chemical standards of acetylcholinesterase (AChE) inhibitors (azamethiphos, caffeine, donepezil, galanthamine, methiocarb-sulfoxide, paraoxon-ethyl) and of neurotoxic compounds, as well as drinking or contaminated water samples enriched through solid phase extraction. HPTLC on spherical silica gel (pre-washed twice by 20 min immersion in isopropanol, heated 20 min at 120 °C before and after pre-washing with acetonitrile). First separation (preparative TLC) with automated multiple development (16 steps). Effect-directed analysis for AChE inhibitors by immersion (speed 5 cm/s, time 1 s) into enzyme solution, incubation 5 min at 37 °C and immersion into substrate solution (indoxyl acetate 2 % in methanol); visualization under UV 366 nm. Active zones from untreated layers were eluted through the oval head of a TLC-MS interface to a second plate for a second separation with a panel of other mobile phases. Bands of interest were eluted from the second layer with water through the oval elution head of the TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole time-of-flight mass spectrometer. Full scan mass spectra (m/z 100–1200) were recorded in negative and positive modes using electrospray ionization (and collision-induced dissociation for MS2). Among the water contaminants, lumichrome (riboflavin photolysis product), paraxanthine and linear alkylbenzene sulfonates were identified as AChE inhibitors.
J Chromatogr A, 1621, 461044 (2020). Samples were five isoquinoline alkaloids (berberine, chelerythrine, chelidonine, coptisine, sanguinarine) either as standard mixture or present in a Chelidonium majus (Papaveraceae) herb extract obtained with HCl 0.05 M in methanol. Separation on TLC and HPTLC silica gel layers with a screening of mobile phases consisting of eutectic mixtures of chemicals and/or phytochemicals. These homogenous stable liquids called DES (deep eutectic solvents) were obtained either simply by mixing, or by mixing followed by heating at 50°C, or by mixing with water for dissolution followed by dehydratation through rotary evaporation. For polarity adjustment, the DES phases were tested pure or diluted with acetone, chloroform, diethyl ether, methanol, or water. Visualization under UV 366 nm. The best separation was obtained with menthol – phenol in equimolar mixture, with 35 % methanol added (hRF values of the selected alkaloids were 33, 39, 79, 20 and 52, respectively).