Cumulative CAMAG Bibliography Service CCBS
Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.
The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:
- Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
- Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
- Keyword register: select an initial character and browse associated keywords
- Search by CBS edition: Select a CBS edition and find all related publications
Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.
J. Pharmacogn. Phytochem. 12(1), 6-14 (2023). TLC silica gel layers were used to monitor the purification through column chromatography (CC) of a chloroform fraction of the methanolic root bark extract of Rauvolfia vomitoria (Apocynaceae). Mobile phases were petroleum ether – ethyl acetate 4:1 (MP1), dichloromethane – methanol 20:1 (MP2), and dichloromethane – methanol 15:1 (MP3). Visualization under UV 254 nm. Preparative TLC on thicker silica gel was performed on two subfractions: (A) with dichloromethane – methanol 100:7 for the isolation of the methyl esters of eudesmic acid and of trimethoxycinnamic acid (hRF values 35 and 28, respectively, in MP1); (B) with MP2 for the isolation of an indole alkaloid: kumujan B (= 1-carbomethoxy-β-carboline, hRF value 40 in MP2). Other indole alkaloids were isolated through CC: ajmaline, mauensine and reserpine (hRF values 35, 13 and 47, respectively, in MP3).
Marine Drugs 21(1), 2 (2023). Samples were methanol extracts of cultivated marine bacteria Thalassomonas actiniarum, T. viridans and T. haliotis (Colwelliaceae), as well as cholesterol, cholic acid, and deoxycholic acid as standards. TLC on silica gel with n-hexane – ethyl acetate – methanol – acetic acid 20:20:5:2. After drying at room temperature, visualization by spraying with phosphomolybdic acid (10 % in ethanol) and heating with a heat-gun. For isolation of cholic acid (hRF 80), present in all samples, preparative TLC on silica gel with the same mobile phase, the corresponding band was scraped off with a surgical blade and extracted with methanol overnight. The isolated cholic acid was identified by LC-MS.
J Chromatogr A 1653, 462442 (2021). Samples were peptides obtained through tryptic hydrolysis of the 5 most abundant milk proteins: α-lactalbumin (α-LA), β-lactoglobulin (β-LG), α-, β- and κ-casein (CA). As standards, synthetic whey and pea (Pisum sativum, Fabaceae) peptides (selected based on the in silico tryptic digest of α-LA, β-LG, legumin A, and vicilin with one or zero miscleavages) were only used in the last assay for prediction of the RF values of peptides with known amino-acid (AA) sequences. Two-dimensional HPTLC on silica gel (pre-washed with methanol and activated 10 min at 100°), first with basic mobile phase sec-butanol – pyridine – ammonia – water 39:34:10:26, and (after 12h drying) in the orthogonal direction with acidic mobile phase sec-butanol – pyridine – acetic acid – water 11:8:2:5. Derivatization for peptides and proteins by immersion into fluorescamine (0.05 % in acetone); visualization under UV 254 nm and 365 nm. Computer-assisted determination of the x- and y-coordinates of the derivatized zones. Repeatability (n=8) of the 2D-HPTLC was statistically tested with the Kolmogorov-Smirnov test for normal distribution and with Dixon’s Q test for outliers. Relative standard deviation (RSD) for the RF values was 12.9 % for the first dimension (y-coordinates) and 16.5 % for the second dimension (x-coordinates). According to their higher intensity and sharpness, 15 – 20 detected zones from each protein hydrolyzate were selected, manually scraped from the derivatized layer, dissolved in formic acid solution (0.1 % in acetonitrile – water 3:2), mixed with an equal volume of matrix (dihydroxybenzoic acid 2 % in acetonitrile – water 3:7), crystallized on air on a ground steel target, before being desorbed by the laser beam of the MALDI-TOF-MS/MS (matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry). Direct hyphenation of HPTLC to MS was not performed, to avoid zone diffusion during plate coating with the matrix and to circumvent the stronger binding of polar peptides on the layer. The MS spectra were acquired in positive reflector mode in m/z range 340 – 4000 (10 – 2500 for fragments), using an external peptide as calibration standard. Identification of 51 from the 85 selected peptides according to AA sequences was performed, using software programs allowing m/z calculation of protein fragments and estimation of cleavage sites. Correlation of the retention behaviour of the peptides with their properties (molecular weight MW, isoelectric point IEP, charges, polarity) was tested with Student’s two-sided t-test after calculation of Pearson’s correlation coefficients. The correlation was significant with IEP, percentages of anionic AA and of non-polar AA; but not with the following properties: MW, percentages of cationic AA and of uncharged polar AA. Finally, based on the correlation results, regression formulas were found to calculate the x- and y-coordinates of any known peptide from the percentage of non-polar AA (or vice-versa). The prediction power of these formulas was verified by repeating the complete 2D-HPTLC-MS experiment with the standard peptides of whey and of peas, and measuring the absolute and relative deviations between the actual x- and y-coordinates and the predicted values. The absolute deviations were higher in the lower RF zones. The average, relative RF value deviations (range 22.1 – 25.7 %) were not different between whey and pea peptides.
J Chromatogr A 1638, 461597 (2021). Samples were Isatis tinctoria (= I. indigotica) root extracts (Brassicaceae) and their fractions. Standards were oseltamivir acid (OA), a neuraminidase (NA) inhibitor; pinoresinol (PR, a lignan), β-sitosterol (SS, a sterol), and dihydro-neoascorbigen (DHNA, an alkaloid). HPTLC / TLC on silica gel with (1) petroleum ether – ethyl acetate – acetic acid 48:8:1 for petroleum ether extracts and SS, or 30:40:1 for ethyl acetate extracts, or 10:30:1 for PR; (2) with toluene – ethyl acetate – methanol – formic acid 16:3:1:2 or 10:4:1:2 also for ethyl acetate extracts and DHNA; (3) with n-butanol – acetic acid – water 25:4:3 for butanol extracts. OA was applied but not developed. RP-18, polyamide, cellulose, alumina layers were tested, but the resolution was lower. Derivatization by spraying with sulfuric acid (10 % in ethanol). Enzymatic assay by immersion of the plates into neuraminidase solution (6 U/mL), followed by 1 h incubation at 37 °C and by immersion into chromogenic substrate solution (1.75 mM 5-bromo-4-chloro-3-indolyl-α-D-N-acetylneuraminic acid). After 5 min, NA inhibitors were seen as white zones on blue background. The experiment was previously improved for the following parameters: incubation times, substrate and enzyme concentrations, followed by statistical evaluation and calculations using Box-Behnken design. Quantification by absorbance measurement (detection wavelength 605 nm, reference wavelength 420 nm). In optimal conditions, OA had LOD 300 ng/zone. Zones of interest on underivatized plates were directly submitted to MS, using EFISI (electrostatic-field-induced spray ionisation), as follows. Chromatograms were immersed 1–3 s into dimethicone – n-hexane 1:1 to form a hydrophobic film, and dried 30 min at room temperature; on the analyte spot, a hydrophilic droplet was formed with 5 µL methanol – water 1:1, extracting the analyte from the layer; the analyte was further attracted through a capillary tube (3–4 cm long, made of non-deactivated fused silica) under a strong electrostatic field, into the in-let orifice of the triple-quadrupole – linear ion-trap MS (induction voltage 4 kV; capillary voltage 40 V; tube lens voltage 100 V; capillary temperature 200 °C). Full-scan spectra were recorded in m/z range 50 – 1000, helium was used for collision-induced dissociation. 11 active compounds were identified in the extract: SS, 6 alkaloids (including cycloanthranilylproline, DHNA, hydroxy-indirubin, isatindigodiphindoside, isatindinoline A and), 3 lignans (including PR and isolariciresinol), 1 fatty acid (trihydroxy-octadecenoic acid).
Heliyon 8(8), e10103 (2022). Samples were a methanolic extract of Cymbopogon giganteus leaves (= C. caesius subsp. giganteus, Poaceae), as well as flavones as standards: isorhamnetin, luteolin and orientin (=luteolin 8-C-glucoside). HPTLC on silica gel with ethyl acetate – acetic acid – formic acid – water 100:11:11:26. Derivatization for flavones with Neu’s reagent (ethanolamine diphenylborate – PEG). Visualization under UV 365 nm. The standards (hRF 75, 70-72 and 96, respectively) were not detected in the extract. Some analytes detected by the reagent were scraped from the underivatized plate into a tube, and injected through a TLC-MS interface into a double-quadrupole – time-of-flight MS (electrospray ionization). Full mass scan spectra were recorded in positive and negative ionization modes in m/z range 150–550. For 3 of the compounds, isolated through MPLC columns, the HPTLC-MS results, combined to the NMR and HPLC-MS analyses, allowed the identification as epicatechin (hRF 86, a flavanol, not coloured by Neu’s reagent) and as luteolin 8-C- and 6-C-glucosides (hRF 67-70).
Chinese Medicine 16, 98 (2021). Preparative TLC on silica gel for the isolation of bisbakuchiol N (a terpenophenolic) from a cyclohexane extract of Psoralea corylifolia (= Cullen corylifolia, Fabaceae) mature fruits, after fractionation on silica gel, cyclodextrane and reverse-phase columns. Mobile phase was petroleum ether – chloroform 10:1. Derivatization with sulfuric acid (10 % in ethanol – water, 19:1).
J Chromatogr A, 1647, 462153 (2021). Samples were extracts of Pittosporum angustifolium leaves (Pittosporaceae), either pure or fermented 1-4 weeks in NaCl solution, as well as acarbose, gallic acid, β-sitosterol, caffeic and chlorogenic acids, as standards. HPTLC on silica gel (prewashed with methanol and dried 15 min at 105 °C) with n-hexane – ethyl acetate – acetic acid 15:9:1. Derivatization by immersion (speed 5 cm/s, time 1 s): (A) into DPPH• 0.2 % solution, to detect radical scavengers; (B) into neutralized ferric chloride (3 % in ethanol), followed by 5 min heating at 110 °C, for detection of phenolic compounds; (C) into anisaldehyde – sulphuric acid reagent, followed by 10 min heating at 110 °C, to detect terpenes and steroids. Effect-directed analysis (EDA) for α-amylase inhibition assay (D) by immersion into enzyme solution, incubation 15 min at 37 °C, immersion into substrate solution (starch 2 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). In all cases, visualization under white light. Quantification was performed on pictures using image processing software, and expressed as equivalents to the respective standards used for calibration curves: (A) and (B) gallic acid (LOQ 250 and 740 ng/band, respectively), (C) β-sitosterol (LOQ 1.5 µg/band), (D) acarbose (LOQ 8 µg/band). Zones of interest, scraped from untreated plates and washed with ethyl acetate, were submitted by ATR-FTIR analysis. An amylase inhibiting zone (hRF 85) present in all extracts was identified as fatty acid esters: ethyl palmitate in unfermented and methyl linoleate in fermented extracts. Moreover, fermented extracts contained antioxidant zones (hRF 15 – 20), identified as monomers and oligomers (including hydroxycinnamic, guaiacyl, syringyl derivatives) from decomposed lignin.
J Chromatogr A, 1620, 460970 (2020). Samples were ethyl acetate extracts of Lavandula angustifolia herb and flowers and of aerial parts of other Lamiaceae (Ocimum basilicum, Origanum vulgare, Thymus vulgaris, Rosmarinus officinalis, Salvia officinalis), as well as standards. HPTLC on silica gel (pre-washed with methanol and heated 30 min at 105 °C) with n-hexane – ethyl acetate – acetic acid 70:27:3. Documentation at UV 254 nm and 365 nm and white light before and after A) derivatization with anisaldehyde – sulfuric acid reagent, followed by 10 min heating at 110 °C; B) spraying with DPPH• (0.2 % in methanol), followed by 30 min incubation in the dark; C) α-amylase inhibition assay by immersion into enzyme solution, incubation 30 min at 37 °C, immersion into substrate solution (starch 1 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). Quantification was performed on pictures using image processing software, and expressed as equivalents to the respective standards used for calibration curves: A) β-sitosterol (LOQ 1.5 µg/band), B) gallic acid (LOQ 60 ng/band), C) acarbose (LOQ 8 µg/band). An amylase inhibiting zone (hRF 68) present in all samples (except L. angustifolia), scraped from untreated plates and washed with ethyl acetate, was tentatively identified by ATR-FTIR analysis as oleanolic acid (pentacyclic triterpene).