Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      131 007
      Principal component analysis and DoE-Based AQbD Approach to Multipurpose HPTLC method for synchronous estimation of multiple FDCs of metformin HCl, repaglinide, glibenclamide and pioglitazone HCl
      P. PRAJAPATI*, K. RADADIYA, S. SHAH (*Department of Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Gujarat, India; pintu.prajapati@utu.ac.in)

      J Chrom Sci, bmad055 (2022). Standards of antiglycemic drugs were metformin hydrochloride (S1, a biguanide), glibenclamide (S2 = glyburide, a sulfonylurea), pioglitazone hydrochloride (S3, a thiazolidinedione), repaglinide (S4, a glinide). Samples were methanolic solutions of commercial tablets of S1 with each of the other molecules. The following method was developed by a software-assisted AQbD approach (analytical quality by design): (1) Several TLC separations were tried with toluene together with other solvents and with acidic or basic modifiers, with also variations of 24 method or instrumental parameters. (2) Principal component analysis (PCA) was performed in order to identify two principal components (PCs) responsible for 98 % of the observed variations: namely, resolution and tailing factor. Three critical method parameters (CMPs) had a statistically significant impact on the PCs: mobile phase (MP) composition, ammonium acetate concentration in MP, and saturation time. (3) To optimize these CMPs, the Box–Behnken design was implemented in 15 software-proposed experiments; the impacts of the 3 CMPs on the 2 PCs were evaluated by ANOVA, multiple regression analysis, and 2D and 3D contour plots. (4) The optimal CMPs ranges were determined by defining a MODR (method operable design region) on the superposed contour plots, and one TLC condition was selected as analytical control point.
      TLC on silica gel pre-washed with 10 mL methanol, dried and activated 10 min at 100° C. Separation with toluene – ethyl acetate – methanolic solution of 4 % ammonium acetate 7:7:6 after 15 min pre-saturation with 35 % relative humidity. Absorption emasurement at UV 254 nm. The hRF values were 13 for S1, 72 for S2, 82 for S3, 38 for S4. LOQ were 263, 387, 73 and 35 ng/zone, respectively. Linearity range was 25–75 µg/zone for S1, 100–300 ng/zone for S2 and S4, 750–2250 ng/zone for S3. Intermediate precision was below 2 %. For accuracy tests, recovery rates were between 97.6–101.4 %.

      Classification: 2e, 5c, 7, 8b, 17a, 17c, 23d, 23e, 24, 32a
      131 004
      Simultaneous determination of montelukast sodium and loratadine by eco-friendly densitometry and spectrophotometric methods
      Shimaa A. MAHMOUD*, A.M. EL-KOSASY, F.A. FOUAD
      (*Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; shimaa.ahmed22@azhar.edu.eg)

      J Chrom Sci, bmad025 (2023). Standards (separated and mixed) were montelukast sodium (MKT) and loratadine (LRT). Samples were methanolic solutions of commercial tablets, and purified blood plasma as biological fluid, from patients taking MKT or LRT as oral treatment. TLC on silica gel with ethyl acetate – ethanol 9:1. Visualization under UV 254nm. The hRF values were 80 for MKT and 71 for LRT. Densitometric absorbance measurement at 260 nm (20 mm/s scanning speed). System suitability was verified by resolution, selectivity, capacity and absence of tailing. The method was validated for linearity range (0.3–3.6 μg/zone for MKT, 0.2–4 µg/zone for LRT), for precision, for reproducibility, for robustness, and for accuracy expressed as average recovery values (100 % overall mean) at different concentrations. The TLC-densitometric method was also found statistically equivalent (Student’s t-test and F-test) to a previously described method (HPLC – spectrophotometry), but was better in terms of environmental and health impacts, using green analytical procedure index (GAPI) and analytical eco-scale (scores based on solvents/reagents, energy consumption, occupational hazard and waste generation). The TLC method was also compared to three (equally “green”) different analytical methods of spectrophotometry (without chromatography): response correlation, absorptivity-centering and LRT-MKT ratio derivatives. The TLC method was more sensitive (LOQ values were 82 ng/zone for MKT, 20 ng/zone for LRT).

      Classification: 5c, 7, 17c, 23d, 23e, 24, 32a, 32c
      130 118
      A validated method for the thin‑layer chromatography in situ densitometric quantitation of capsaicinoids in Habanero pepper (Capsicum chinense Jacq.)
      A. CORDOVA, M. MONFORTE, A. ROZETE, N. ESTRADA, F. VAZQUEZ* (*Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, 97205 Mérida, Yucatán, Mexico, felipe@cicy.mx)

      J. Planar Chromatogr. 35, 473-479 (2022). HPTLC of capsaicin and dihydrocapsaicin as capsaicinoids in Habanero pepper pods on silica gel with cyclohexane - chloroform - acetic acid 7:2:1. Quantitative determination by absorbance measurement at 254 nm. The hRF value for capsaicinoids was 29. Linearity was between 0.5 and 4.0 µg/zone. Interday and intra-day precisions were below 6 % (n=6). The LOD and LOQ were 251 and 750 ng/zone, respectively. 

      Classification: 17c
      130 002
      An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry
      O. GALARCE-BUSTOS, J. PAVÓN-PÉREZ, K. HENRÍQUEZ-AEDO, M. ARANDA*
      (*Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; maranda@udec.cl, maranda@gmx.net)

      J Chromatogr A, 1608, 460415 (2019). Samples were acetonitrile extracts of Annona cherimola fruit peel, pulp and seeds (Annonaceae), as well as caffeic acid as standards. HPTLC on silica gel with chloroform – ethyl acetate – propanol 21:2:2 for peel extracts, with chloroform – methanol 9:1 for seed extracts. Derivatization by spraying Dragendorff’s reagent for alkaloids, secondary amines and non-nitrogenous oxygenated compounds.  Effect-directed assay was performed for inhibitors of α-glucosidase. Before sample application, plates were developed with enzyme substrate (2-naphthyl-α-D-glucopyranoside 0.1 % in methanol) and dried 20 min at 60 °C. Then, samples were applied and separated, and mobile phase was removed by heating 10 min at 60 °C. The chromatogram was sprayed with 4 mL enzyme solution (5 unit/mL in 100 mM phosphate buffer,  pH 7.4), liquid excess was removed under lukewarm air stream, the plate was incubated 10 min at 37 °C in a moisture box, followed by spraying chromogenic reagent Fast Blue salt B 0.1 % in water, giving after 2 min white inhibition bands visible on purple background under white light. Plate image was documented under illumination (reflectance mode) with white light. The bands of 3 inhibiting compounds were analyzed in a triple quadrupole mass spectrometer. 1) Full scan mass spectra (m/z 50−1000) in the positive ionization mode were recorded using electrospray ionization (ESI, spray voltage 3 kV, desolvation line temperature 250 °C, block temperature 400 °C) for compounds directly eluted with methanol – acetonitrile through the oval elution head of a TLC-MS interface pump. 2) Compounds were also isolated (either eluted directly from the plate into a vial through the same interface, or scraped from the plate and extracted with methanol – chloroform into a vial), dried, and submitted to HPLC-DAD-MS/MS; MS-MS spectra were recorded in the same conditions, using argon as collision gas and collision cell voltages from -20 and -40 V. Inhibitors were identified as phenolamides (phenylethyl cinnamides): moupinamide (hRF 66 in peels, 56 in seeds), N-trans-feruloyl phenethylamine (hRF 76 in peels), N-trans-p-coumaroyl tyramine (hRF 44 in seeds).

      Classification: 4d, 4e, 7, 17c, 32e
      129 041
      Inherent stability testing of empagliflozin in the presence of metformin HCl by HPTLC and characterization of degradation products of empagliflozin by LC–ESI–QTOF–MS/MS
      V. VICHARE*, V. CHOUDHARI, V. TAMBE, S. DHOLE (*PES Modern College of Pharmacy (for Ladies), Moshi, Pune, Maharashtra, India, vicharevijaya11@gmail.com)

      J. Planar Chromatogr. 35, 61-71 (2022). HPTLC of empagliflozin (1) in the presence of metformin HCl (2) on silica gel with toluene - methanol - ammonia - glacial acetic acid 72:26:1:1. Quantitative determination by absorbance measurement at 230 nm. The hRF values for (1) and (2) were 15 and 48, respectively. Linearity was between 11 and 112 ng/zone for (1) and 85 and 850 ng/zone for (2). Interday and intra-day precisions were below 2 % (n=3). The LOD and LOQ were 0.6 and 1,7 ng/zone for (1) and 5 and 15 ng/zone for (2), respectively. Recovery was found to be in the range of 99.4-101.0 % for (1) and 100.3-101.4 % for (2). Degradation products were characterized by liquid chromatography coupled with electrospray ionizationquadrupole-time of flighttandem mass spectrometry (LCESIQTOFMS/MS).

      Classification: 8b, 17c
      128 013
      High-performance thin-layer chromatography with atmospheric solids analysis probe mass spectrometry for analysis of gasoline polymeric additives
      M. BEAUMESNIL, A. MENDES, M. HUBERT, C. LOUTELIER, C. AFONSO*, A. RACAUD, Y. BAI (Normandie Univ, COBRA, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France, carlos.afonso@univ-rouen.fr)

      Rapid Commun. Mass Spectrom. 34, 8755 (2020). HPTLC of a synthetic formulated gasoline (diluting polypropylene glycol and polyisobutylene succinimide polyamine surfactant at a mass ratio of 1 % in gasoline) on silica gel with methanol - toluene 2:3. Detection under UV light. Samples were scratched for analysis by atmospheric solids analysis probe mass spectrometry (ASAP-MS).

      Classification: 17c, 37a
      126 028
      Development and validation of stability indicating chromatographic methods for simultaneous determination of citicoline and piracetam
      M. ABDELRAHMAN, A. AHMED*, M. OMAR, S. DERAYEA, N. ABDELWAHAB (*Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, 62514, Beni-Suef, Egypt, amal.badawy@nub.edu.eg)

      J. Sep. Sci. 43, 2981-2988 (2020). HPTLC of citicoline (1) and piracetam (2) in presence of their degradation products on silica gel with methanol - chloroform - ammonium chloride buffer 9:1:2. Quantitative determination by absorbance measurement at 230 nm. The hRF values for (1) and (2) were 15 and 85, respectively. Linearity was between 0.2 and 4 µg/zone for both (1) and (2). Intermediate precision was below 2 % (n=3). The LOD and LOQ were 56 and 180 ng/zone for (1) and 53 and 170 ng/zone for (2), respectively. Average recovery was 100.9 % for (1) and 99.8 % for (2).

      Classification: 17c
      126 032
      Validation and eco-scale assessment of stability-indicating HPTLC method for quantitative analysis of carbamazepine and its degradation product, iminostilbene, in pure forms, pharmaceutical preparations, and spiked human plasma
      I. NAGUIB, N. ALI, F. ELROBY, M. EL GHOBASHY, F. ABDALLAH* (*Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt, dr.zahrafared@yahoo.com)

      J. Planar Chromatogr. 33, 219-229 (2020). HPTLC of carbamazepine (1) and its degradation product iminostilbene (2) on silica gel with petroleum ether - acetone 7:3. Quantitative determination by absorbance measurement at 230 nm. The hRF values for (1) and (2) were 12 and 63, respectively. Linearity was between 0.1 and 1.4 µg/zone for (1) and 0.1 and 1.2 µg/zone for (2). Intermediate precision was below 2 % (n=3). The LOD and LOQ were 0.03 and 0.09 µg/zone for (1) and 0.03 and 0.09 µg/zone for (2), respectively. Average recovery was  99.7 % for (1) and 99.7 % for (2).

      Classification: 17c, 32a