Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      132 059
      Botanical biopesticides have an influence on tomato quality through pest control and are cost-effective for farmers in developing countries
      W. AKHTER, F.M. SHAH*, MINGLU YANG**, S. FREED, M. RAZAQ*, A. GERALD MKINDI, H. AKRAM, A. ALI, K. MAHMOOD, M. HANIF (*Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan; **College of Agriculture, Tarim University, Alar, Xinjiang, China; *;; **

      PLoS ONE 18(11), e0294775 (2023). Sample was an Azadirachta indica seed extract (Meliaceae). TLC on silica gel with different mobile phases: (1) diethyl ether – methanol 49:1; (2) diethyl ether – acetone 2:1; (3) isopropanol – n-hexane 11:9; (4) dichloromethane – methanol – acetic acid 95:5:1. After 30 min hot air drying,detection under UV light. The hRF values of azadirachtin A (a limonoid) were 75, 42, 44, 55, respectively. Mobile phase (1) was therefore chosen as solvent for purification of azadirachtin A and for its quantification by Fourier transform infrared spectroscopy (FTIR).

      Classification: 4e, 8b, 15a, 32e
      132 058
      In vitro antiproliferative and apoptotic effects of thiosemicarbazones based on (–)-camphene and R-(+)-limonene in human melanoma cells
      P. R. OTAVIANO SOARES, D. C. SOUZA PASSOS, F. MOREIRA da SILVA, A.P. B. da SILVA-GIARDINI, N. PEREIRA COELHO, C.M. ALVES de OLIVEIRA, L. KATO, C.C. da SILVA, Lidia GUILLO* (*Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil;

      PLoS ONE 18(11), e0295012 (2023). TLC on silica gel to monitor the synthesis of 15 new camphene-based thiosemicarbazones produced by the reaction of camphene thiosemicarbazide either with benzaldehydes, or with acetophenones, or with one of the following molecules: benzophenone, cinnamic aldehyde, ethyl pyruvate, furaldehyde, menthone, pyrrole carboxaldehyde or thiophene-carboxaldehyde. Development with n-hexane – ethyl acetate 3:7 in the case of benzaldehydes, except vanillin; or 7:3 for the vanillin derivative and all others, followed by visualization of products with resublimated iodine. The aldehyde used for compound 15 is in fact vanillin.

      Classification: 4e, 7, 8b, 15a, 17c, 23e, 24
      130 081
      Applicability of the Universal Mixture for describing system suitability and quality of analytical data in routine normal phase High Performance Thin Layer Chromatography methods
      M. SCHMID, T.K. Tiên Do*, I. TRETTIN, E. REICH (*CAMAG, Muttenz, Switzerland;

      J Chromatogr A 1666, 462863 (2022). Theoretical discussion on the factors determining the RF value of a given substance in a chromatographic system: A) the stationary phase (SP); B) the mobile phase (MP), the composition of which can be different from the solvent mixture prepared because of evaporation, saturation and liquid or gas adsorption effects over migration time; C) the difference of the free energies for the analyte transfer from SP to MP; D) external parameters like temperature and humidity. The universal HPTLC mixture (UHM) is a mixture of reference compounds that can be used for the system suitability test (SST) for the full RF range in all HPTLC experiments. Its composition is: thioxanthen-9-one (0.001 %), guanosine (0.05 %), phthalimide (0.2 %), 9-hydroxyfluorene, octrizole, paracetamol, sulisobenzone and thymidine (each 0.1 %), in methanol. The purpose was to study the potential of UHM to replace SST (described with specific markers in European Pharmacopoeia monographs) and to assess the quality of HPTLC results. TLC and HPTLC silica gel on different support (aluminium, glass) or with different granulometries and binders (classic, Durasil, Adamant), of the UHM, an acetonitrile extract of Abelmoschus manihot flowers (Malvaceae), a methanol extract of Sambucus canadensis flowers (Adoxaceae), and essential oils of Lavandula angustifolia, of Mentha × piperita (Lamiaceae) and of Myristica fragrans (Myristicaceae), as well as the following specific markers (standards): borneol, bornyl acetate, linalool, linalyl acetate (terpenoids), isoeugenol, isoeugenol acetate, chlorogenic acid (phenylpropanoids), gossypin (flavone), gossypetin-glucuronide, hyperoside (flavonol heterosides). Development (after 20 min plate conditioning with a saturated MgCl2 solution) with one of the following mobile phases: (MP1) toluene – ethyl acetate 19:1, especially for essential oils; (MP2) ethyl acetate – butanone – formic acid – water 5:3:1:1, especially for S. canadensis; (MP3) ethyl acetate – acetic acid – formic acid – water 100:11:11:26, especially for A. manihot. Documentation in UV 254 nm and 350 nm, and with white light (reflection + transmission), before and after derivatization. RF values were determined by scanning densitometry at 254 nm in absorption mode (for octrizole, at 366 nm in fluorescence mode with mercury lamp and optical filter K400 nm). For each HPTLC condition, intra-laboratory precision assay of UHM separation was performed (at least 5 analyses) with average RF values and 95 % prediction intervals, and calculating RF differences between pairs of UHM constituents and 95 % confidence intervals, which were max. +/-0.012 of the RF values for all UHM and markers. The sensitivity of UHM, and thus its usefulness as generic SST was demonstrated by repeating the HPTLC experiments with modifying by 10 % the quantity of one of the solvent each time. There were always significant changes in RF values of UHM components and/or in RF differences between pairs of UHM bands; it was often but no always the case with the official specific markers. UHM underwent also significant changes (although less than A. manihot extract) when several silica gel phases were compared under the same HPTLC conditions. This property is crucial to verify the right stationary phase before doing any RF correlations, and could make UHM a universal tool to identify discrepancies between different analyses. Finally, the use of UHM for a computer-supported evaluation of HPTLC results was discussed, either for zone identification and RF corrections (within confidence intervals), or for correlations of entire fingerprints as first step to implement machine learning algorithms.

      Classification: 2a, 2f, 3g, 7, 8a, 15a, 15b, 32e
      130 143
      Estimation of withaferin-A by HPLC and standardization of the Ashwagandhadi lehyam formulation
      A. K. MEENA*, P. REKHA, A. PERUMAL, M. GOKUL, K.N. SWATHI, R. ILAVARASAN (*Captain Srinivasa Murthy Regional Ayurveda Drug Development Institute, Central Council for Research in Ayurvedic Sciences, Arumbakkam, Chennai, India;

      Heliyon 7(2), e06116 (2021). Samples were a methanolic extract of a semi-solid ayurvedic conserve (ashwagandhadi lehyam) prepared with Withania somnifera roots (Solanaceae) and five other plants, as well as standards: withaferin A and withanolide A (= withaniol), two ergostane triterpene steroids with lactone cycle and epoxide. HPTLC on silica gel with toluene – ethyl acetate – formic acid 6:4:1. Visualization and densitometric scanning at UV 254 nm and 366 nm (deuterium lamps). Derivatization by immersion into vanillin – sulfuric acid reagent, followed by oven heating at 105 °C until optimal coloration. Documentation under white light and densitometry scanning at 540 nm (tungsten lamp). Both analytes (hRF 35 and 45 respectively) were shown at 254 nm and 540 nm (but not at 366 nm), in the standards and in the extract.

      Classification: 8b, 9, 13c, 15a, 32e
      130 026
      New bakuchiol dimers from Psoraleae fructus and their inhibitory activities on nitric oxide production
      Qingxia XU, Qian LV, Lu LIU, Yingtao ZHANG*, Xiuwei YANG**
      (State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China; *; **

      Chinese Medicine 16, 98 (2021). Preparative TLC on silica gel for the isolation of bisbakuchiol N (a terpenophenolic) from a cyclohexane extract of Psoralea corylifolia (= Cullen corylifolia, Fabaceae) mature fruits, after fractionation on silica gel, cyclodextrane and reverse-phase columns. Mobile phase was petroleum ether – chloroform 10:1. Derivatization with sulfuric acid (10 % in ethanol – water, 19:1).

      Classification: 4d, 7, 15a, 32e
      130 030
      High-performance thin-layer chromatography hyphenated with microchemical and biochemical derivatizations in bioactivity profiling of marine species
      Snezana AGATONOVIC-KUSTRIN*, E. KUSTRIN, V. GEGECHKORI, D. W. MORTON (*Department of Pharmaceutical and Toxicological Chemistry, Institute of Pharmacy, Sechenov University, Moscow, Russia, and School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia;

      Marine Drugs 17(3), 148 (2019). Samples were ethyl acetate extracts of seagrass Amphibolis antarctica (Cymodoceaceae), and of algae: Austrophyllis harveyana (Kallymeniaceae), Carpoglossum confluens, Cystophora harveyi, C. monilifera, C. pectinata and C. subfarcinata, Myriodesma integrifolium, Sargassum lacerifolium (Sargassaceae), Codium fragile subsp. tasmanicum (Codiaceae), Ecklonia radiata (Lessoniaceae), Hypnea valida, Rhodophyllis membaneacea (Cystocloniaceae), Hormosira banksii (Hormosiraceae), Perithalia caudata (Sporochnaceae), Phyllospora comoasa, Scytothalia dorycarpa (Seirococcaceae), Plocamium dilatatum (Plocamiaceae), and epiphytic brown algae. HPTLC on silica gel (pre-washed with methanol and heated 30 min at 100 °C) with n-hexane – ethyl acetate – acetic acid 15:9:1. Derivatization by immersion: A) into anisaldehyde – sulfuric acid reagent, followed by 10 min heating at 105 °C, for the detection of steroids and terpenes; B) into DPPH• (0.2 % in methanol), followed by 30 min incubation in the dark, for the detection of antioxydants; C) into Fast Blue B solution (0.1 % in 70 % ethanol) for detection of phenols (with alkylresorcinols detected as dark purple zones on colorless background). Effect-directed analyses were performed directly on the plates. D) α-Amylase inhibition assay by immersion into enzyme solution, incubation 30 min at 37 °C, immersion into substrate solution (starch 2 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). E) Acetylcholinesterase (AChE) inhibition assay (after neutralization by immersion into phosphate buffer) by immersion into enzyme solution, incubation 30 min at 37 °C, immersion into substrate solution (α-naphthyl acetate) and into dye reagent (Fast Blue Salt B). Densitometry through automated scanning, quantification expressed as equivalents to the respective standards used for calibration curves: A) β-sitosterol (LOQ 1.6 µg/band), B) gallic acid (LOQ 60 ng/band), D) acarbose (LOQ 173 µg/band), E) donepezil (LOQ 96 µg/mL). Alkylresorcinols were detected as antioxydant in C. harveyi and C. pectinata (hRF 88), and in C. subfarcinata (hRF 72, 81, 88). Enzymatic inhibitors in C. fragile were considered as a flavone (hRF 65) and a terpenoid (hRF 77), due to their absorption curves (densitometric scan in range 200-400 nm).

      Classification: 4e, 7, 8a, 15a, 32e
      130 110
      DoE-assisted development and validation of a thin layer chromatography method for optimized separation of major cannabinoids in Cannabis sativa L. samples
      Maira SOUZA*, R. LIMBERGER, A. HENRIQUES (*Laboratorio de Farmacognosia e Controle da Qualidade de Fitoterapicos, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil,

      J. Liq. Chromatogr. Relat. Technol. 44, 809-819 (2021). HPTLC of major cannabinoids in Cannabis sativa on silica gel with hexane - ethyl acetate - methanol 7:2:1. Detection by spraying with anisaldehyde  sulfuric acid reagent. Quantitative determination by absorbance measurement at 525 nm for lupeol. The hRF values for Δ9-tetrahydrocannabinol and tetrahydrocannabinolic acid were 55 and 36, respectively. Analytical Quality by Design (AQbD) tools, such as the Design of Experiments (DoE) was used for a better understanding of the analytes’ chromatographic behavior as a function of the mobile phase composition. 

      Classification: 8b, 15a
      130 013
      Characterization of natural herbal medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry
      Y. CHEN (Chen Yilin), L. LI (Li Linnan)*, R. XU (Xu Rui), F. LI (Li Fan), L. GU (Gu Lihua), H. LIU (Liu Huwei), Z. WANG (Wang Zhengtao), L. YANG (Yang Li)** (*Shanghai Key Laboratory of Compound Chinese Medicines, and Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; **Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; *, **

      J Chromatogr A, 1625, 461230 (2020). Samples were extracts of Chinese plants: Acorus tatarinowii (= Acorus calamus var. angustatus) rhizomes (Araceae / Acoraceae) (1), Angelica sinensis roots (Apiaceae) (2), Gynura japonica rhizomes (Asteraceae) (3), Phellodendron chinense bark (Rutaceae) (4), Picrasma quassioides twigs and leaves (Simaroubaceae) (5), Rheum sp. roots and rhizomes (R. palmatum, R. tanguticum and/or R. officinale) (Polygonaceae) (6), Sophora flavescens roots (Fabaceae) (7), Dendrobium stems (D. aphyllum, D. aurantiacum var. dennaeanum, D. chrysanthum, D. chrysotoxum, D. gratiosissimum, D. hercoglossum, D. thyrsiflorum, D. trigonopus and D. williamsonii) (Orchidaceae) (8). Standards were: gigantol (from D. sonia); methoxycarbonyl-β-carboline (MCC from (5)); caffeic acid, emodin; senecionine and β-asarone; crategolic acid (= maslinic acid), corosolic acid, oleanic acid, ursolic acid; sesquiterpenoids (atractylenolides I – III) from Atractylodes macrocephala (Asteraceae); flavonoids (baicalein, baicalin, daidzin, hesperidin, wogonin) from Scutellaria baicalensis roots (Lamiaceae). HPTLC on silica gel with 10 mobile phases, depending on the samples. Detection under UV 254 nm and white light. For (3), derivatization with Dragendorff’s reagent (bismuth potassium iodide solution) for visualization of alkaloids. Zones of interest on underivatized plates were identified by a triple-quadrupole ­– linear ion-trap MS, the compounds being removed from the layer by a continuous-wave (445 nm) diode laser pointer through a DART interface (Direct Analysis in Real-Time, helium as gas for plasma-based ambient ionization, discharge needle voltage 1.5 kV, grid voltage 350 V, capillary temperature 300 °C and voltage 40 V, full scan in positive ionization mode in m/z range 150-800). Pigment standards were used for validation of this laser-assisted HPTLC-DART-MS method: malachite green, crystal violet, chrysoidin, auramine O, rhodamine B, Sudan red I – IV, Sudan red G, dimethyl yellow. Afterwards, the same HPTLC-MS method was applied to the origin / species determination of Dendrobium samples, based on the presence of four bibenzyl compounds erianin, gigantol, moscatilin, tristin. Erianin was present only in D. chrysotoxum, whereas none of these were detected in D. hercoglossum. Several components of the extracts were thus identified: asarone (a phenylpropanoid) in (1); phthalide lactones (butenylphthalide, ligustilide and chuanxiong lactone) in (2); co-eluting pyrrolizidine alkaloids (senecionine and seneciphylline) in (3); benzylisoquinoline alkaloid berberine in (4); alkaloids (canthinone alkaloids and MCC) in (5); anthraquinones (rhein, aloe-emodin, emodin, emodin methyl ether, chrysophanol) and (in negative mode) caffeic acid (a hydroxycinnamic acid) and corosolic, maslinic and oleanic acids (triterpenoids) in (6); quinolizidine alkaloids (matrine, oxymatrine, oxysophocarpine, sophoridine) in (7).

      Classification: 4e, 7, 8a, 8b, 15a, 22, 32e