Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      125 013
      Comprehensive HPTLC fingerprinting for quality control of an herbal drug – the case of Angelica gigas root
      Débora Arruda FROMMENWILER*, J. KIM, C. YOOK, T. T. T. TRAN, S. CAÑIGUERAL, E. REICH (*CAMAG Laboratory, Muttenz, Switzerland;

      Planta Medica 84(6/7), 465-474 (2018). The new concept “Comprehensive HPTLC Fingerprinting” was applied to define specifications for the identification and purity assessment of Angelica gigas roots, and for the quantification of its markers: the coumarins decursin and decursinol angelate. Methanolic root extracts of A. gigas (10 reference materials, 24 commercial samples), of 26 other Apiaceae species (including 10 Angelica, 9 Ligusticum, 2 Notopterygium, 4 Peucedanum, and Levisticum officinale) and of mixtures, were developed with toluene - ethyl acetate - acetic acid 90:10:1 on HPTLC silica gel (at 33% relative humidity, chamber pre-saturated for 20 min with filter paper and developing solvent) and dried for 5 min. Detection under white and UV lights before and after derivatization by dipping into 10% sulfuric acid in methanol and then heating 3 min at 100°C. Quantitative evaluation by densitometry in fluorescence mode at UV 313 nm, and luminance was also calculated from the image pixels. The study showed the presence in A. gigas of nodakenin, decursinol, 7-demethylsuberosin, imperatorin, osthole, and isoimperatorin at hRF 0, 4, 15, 33, 38 and 44 respectively. Z-ligustilide (hRF 59) was absent from A. gigas, allowing 1) to distinguish it from several other Apiaceae species; 2) to identify in mixtures with A. gigas two common adulterants (A. acutiloba, A. sinensis) even at 1% in the root powder. Minimal content of A. gigas fingerprint markers (decursin + decursinol acetate, co-eluting at hRF 27) was assessed as 3% (w/w) based on the quantified peaks from A. gigas reference materials.

      Classification: 2f, 8b, 32e
      105 005
      The frustrated reviewer - recurrant failures in manuscripts describing validation of quantitative TLC/HPTLC procedures for analysis of pharmaceuticals
      K. FERENCZI-FODOR, B. RENGER*, Z. VÉGH (*Vetter Pharma-Fertigung GmbH & Co. KG, Schuetzenstrasse 87, 88212 Ravensburg, Germany;

      J. Planar Chromatogr. 23, 173-179 (2010). Many manuscripts and already published articles on analytical procedures to be used in pharmaceutical quality control are characterized by several typical methodological failures and misconceptions. The autors present a collection of typical failures, misconceptions, and misleading data from articles published over the last two years in seven well-known chromatographic publications and provide at the same time a list of references describing optimum approaches to validation of specific TLC/HPTLC procedures. In particular, method specificity, linearity, accuracy, and precision very often are not determined properly and in accordance with best practise.

      Classification: 2f
      76 018
      Validation of analytical procedures in pharmaceutical analytical chemistry
      B. RENGER*, H. JEHLE, M. FISCHER, W. FUNK, (*Byk Gulden Pharmazeutika, Zentrallaboratorien, D-78467 Konstanz, Germany)

      Planar Chromatogr. 8, 269 - 278 (1995). HPTLC of theophylline and structural related substances (i.e. theophyllidine, methylxanthine, theobromine, etophylline, caffeine) on silica with toluene - 2-propanol - acetic acid 16:2:1. Quantification by densitometry at 274 nm.

      Classification: 2f, 32a
      96 008
      Methods of detecting and/or reducing systematic errors in quantitative planar chromatography
      R. E. Kaiser (Institute for Chromatography, P. O. Box 1141, 67085 Bad Dürkheim, Germany)

      Part 3. Evaluation and calibration errors. J. Planar Chromatogr. 18, 256-263 (2005). Third part of a series discussing fundamentals of systematic quantitative errors; systematic errors caused in separation systems; evaluation and calibration errors; nonlinear separation and quantitation techniques; the ,sf4’ procedure for finding summarized systematic errors; systematic errors caused by regulation; conclusions and proposals for quantitative PLC. A correlation function is needed to obtain correct quantitative results from the raw data of a chromatogram - i. e. maximum peak height, peak area of part or or all of a PLC spot, a line or a circle (for circular chromatography): Yi = Ai + Bi x Xi + Ci x (Xi)² + Di x (Xi)³. After 1) Introduction (and example), 2) Evaluation, 3) Calibration errors (3.1 Calibration function found by polynomial interpolation, 3.2 Calibration data analysis, 3.3 Data details for polynomial interpolation, 3.4 Analysis of the ,overall data quality’, the ,data Goodnes’, 3.5 Effect of mathematical accuracy, 3.6 Positioning of the calibration sample ,i’ and the number of different concentrations/amounts to use) follows 4) A possible future of sampling and flexible precise positioning not only of the calibration substances.

      Classification: 2a, 2f
      107 021
      Validation of thin-layer and high-performance thin-layer chromatographic methods
      B. RENGER*, Z. VÉGH, K. FERENCZI-FODOR (*Bernd Renger Consulting, Fritz-Reichle-Ring 2, 78315 Radolfzell, Germany)

      J. Chromatogr. A 1218 (19), 2712-2721 (2011). Presentation of a guidance on how to adopt international accepted formal requirements and guidelines for validation of different TLC/HPTLC procedures. Analytical validation is a key requirement to asses and to prove a method's reliability and suitability for intended different applications, ranging from simple screening tests to sophisticated instrumental quantitative assays of analytes in complex matrices. In addition description of selected parameters for robustness testing and for on-going quality assurance of analytical performance based on control charts.

      Keywords: HPTLC
      Classification: 2f
      78 010
      Validation of an analytical procedure
      H. JORK, G. PFAAB, (Pharm. and Biol. Chem., Univ. of Saarland, D-66041 Saarbrücken, Germany)

      Desaga offprint Thin-layer Chromatography, Heidelberg, 1-4 (1994). Parameters to validate a method are listed and explained like purity of reagents/reference substances/solvents, identity testing, specificity, linearity, precision, trueness, detection resp. determination limits, sensitivity and ruggedness.

      Classification: 2f
      98 007
      Validation of analytical methods for determining mycotoxins in foodstuffs
      J. GILBERT*, E. ANKLAM (*Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York, UK,

      TrAC 21, 468-486 (2002). The article describes the valuable lessons learned from EU while funding a method-validation project (1996-2000) to meet European mycotoxin control in foodstuffs. It shows the performance characteristics of validated and official methods for aflatoxins, the selection and development of methods for validation, and the preparation of naturally contaminated mycotoxin test materials for validation studies. The authors put special emphasis on validation of TLC methods for mycotoxins for developing countries, as the main exporters to Europe of food and food products.

      Classification: 2f
      113 005
      Discrete fourier transform convoluted densitometric peak responses for the determination of methocarbamol in different pharmaceutical mixtures in the presence of its degradation product
      M. RAGAB*, M. KORANY, M. ISSA, H. DAABEES, D. ELKAFRAWY (*Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt,

      J. Planar Chromatogr. 27, 1999-2020 (2014). HPTLC of methocarbamol in pharmaceutical mixtures with ibuprofen, paracetamol and diclofenac sodium and in the presence of its degradation product guaifenesin on silica gel with chloroform - methanol 47:3. Quantitative determination by absorbance measurement at 264 nm. A chemometric handling of the TLC peak responses involving the convolution of the derivative curves using 8-points sin x i polynomials, allowed the analysis of different mixtures of methocarbamol with enhancing of the regression parameters.

      Classification: 2f, 32a