Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      130 003
      Purification and characterization of a novel endolytic alginate lyase from Microbulbifer sp. SH-1 and its agricultural application
      J. YANG, D. CUI, D. CHEN, W. CHEN, S. MA, H. SHEN* (*College of Natural Resources and Environment, South China Agricultural University, Guangzhou, and Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, China; hshen@scau.edu.cn)

      Marine Drugs 18(4), 184 (2020). A new alginate lyase (AlgSH7), isolated from marine bacterium Microbulbifer sp. strain SH1 (Alteromonadaceae), was incubated (24 h at 40 °C) with sodium alginate from brown algae (1 % in TRIS-HCl buffer, pH 9), or with related mannuronate and guluronate polymers (polyM and polyG), or with related saccharides with different polymerisation degrees (PD 1 – 4). TLC of reaction products as well as saccharides, on silica gel with n-butanol ­– acetic acid – water 3:2:2. Derivatization by spraying sulfuric acid (10 % in ethanol), followed by 5 min heating at 130 °C. The enzyme was active only on alginate and on polyM, cleaving them into oligomeric fragments (PD 2 – 4); it was inactive on polyG or on oligomers.

      Classification: 4e, 10
      130 004
      Identification of acetylcholinesterase inhibitors in water by combining two-dimensional thin-layer chromatography and high-resolution mass spectrometry
      Lena STÜTZ*, W. SCHULZ, R. WINZENBACHER (*Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Langenau, Germany; stuetz.l@lw-online.de)

      J Chromatogr A, 1624, 461239 (2020). Samples were chemical standards of acetylcholinesterase (AChE) inhibitors (azamethiphos, caffeine, donepezil, galanthamine, methiocarb-sulfoxide, paraoxon-ethyl) and of neurotoxic compounds, as well as drinking or contaminated water samples enriched through solid phase extraction. HPTLC on spherical silica gel (pre-washed twice by 20 min immersion in isopropanol, heated 20 min at 120 °C before and after pre-washing with acetonitrile). First separation (preparative TLC) with automated multiple development (16 steps). Effect-directed analysis for AChE inhibitors by immersion (speed 5 cm/s, time 1 s) into enzyme solution, incubation 5 min at 37 °C and immersion into substrate solution (indoxyl acetate 2 % in methanol); visualization under UV 366 nm. Active zones from untreated layers were eluted through the oval head of a TLC-MS interface to a second plate for a second separation with a panel of other mobile phases. Bands of interest were eluted from the second layer with water through the oval elution head of the TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole time-of-flight mass spectrometer. Full scan mass spectra (m/z 100–1200) were recorded in negative and positive modes using electrospray ionization (and collision-induced dissociation for MS2). Among the water contaminants, lumichrome (riboflavin photolysis product), paraxanthine and linear alkylbenzene sulfonates were identified as AChE inhibitors.

      Classification: 3d, 4d, 4e, 22, 29b, 35d, 37c
      130 008
      High performance thin-layer chromatography–mass spectrometry methods on diol stationary phase for the analyses of flavan-3-ols and proanthocyanidins in invasive Japanese knotweed
      V. GLAVNIK, Irena VOVK* (*National Institute of Chemistry, Ljubljana, Slovenia; irena.vovk@ki.si)

      J Chromatogr A, 1598, 196-208 (2019). Samples were acertone – water 7:3 extracts of Reynoutria japonica (= Fallopia japonica = Polygonum cuspidatum) rhizomes (Polygonaceae) as well as flavanols (catechin, epicatechin, epicatechin gallate, epigallocatechin gallate) and procyanidins (A1, A2, B1–B3 and C1) as standards. HPTLC on diol silica gel with: (MP1) acetonitrile; (MP2) ethyl acetate; (MP3) ethyl acetate – formic acid 90:1; or (MP4) toluene – acetone – formic acid 3:6:1. Prewashing of the plates with mobile phase was needed only with MP1. After drying under hot air stream, derivatization by automated immersion into DMACA (dimethylaminocinnamaldehyde) – HCl solution (60 mg in 13 mL HCl + 187 mL ethanol), followed by 2 min drying under warm air stream. Visualization under UV 366 nm and white light, densitometry in absorption/reflectance mode at 280 nm (before derivatization) or 655 nm (10 min after derivatization). Bands of interest were eluted from layer with acetonitrile – methanol 2:1 through the oval elution head of a TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole ion trap mass spectrometer. Full scan mass spectra (m/z 150–2000) were recorded in negative mode using electrospray ionization (spray voltage 4 kV, capillary temperature 200◦C, capillary voltage -38.8 V). Monomer gallates to hexamer gallates were detected, separated with MP1, MP2 or MP4; monomers and oligomers (not gallates) were separated with MP3 (up to hexamers) and with MP1 and MP4 (up to decamers). Moreover, enhanced absorption of standards was also studied for influence of mobile phases, of layers (diol silica gel vs. classical silica gel vs. cellulose) and of luminosity (light vs. dark).

      Classification: 4e, 8a, 8b, 32e
      130 007
      Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity
      C. RIEGRAF, A.M. BELL, M. OHLIG, G. REIFFERSCHEID, S. BUCHINGER* (*Federal Institute of Hydrology, Koblenz, Germany; buchinger@bafg.de)

      J Chromatogr A, 1684, 463582 (2022). Samples were concentrated filtrates of leachates of waste deposition sites, as well as testosterone, flutamide, bisphenol A (BPA) and nitroquinoline oxide (NQO) as standards. Automated Multiple Development on HPTLC silica gel (prewashed with methanol and dried 30 min at 110 °C) with 1) methanol up to 20 mm; 2A) chloroform – ethyl acetate –petroleum ether 11:4:5 or 2B) ethyl acetate – n-hexane 1:1 for flutamide and testosterone, up to 90 mm. Effect-directed analysis was performed by automated spraying 3 mL suspension of BJ1991 yeast (transfected Saccharomyces cerevisiae strain, pure for androgenic activity, with 50 ng/mL testosterone for anti-androgenic assay), followed by 20 h incubation at 30 °C in a closed chamber (90 % relative humidity), by 5 min drying under cold air stream, by spraying 2.5 mL MUG solution (4-methylumbelliferyl-galactopyranoside) and by 15 min incubation at 37 °C in an open chamber. Agonistic and antagonistic activities were detected qualitatively under UV 366 nm (light or dark blue bands, respectively, on blue background) and quantitatively documented using automated scanning at excitation wavelength 320 nm (deuterium lamp), with cut-off filter at 400 nm. Dose-response curves for model compounds were established by regression analysis. Anti-androgenic effective doses at 10 % were 28 ng/zone for flutamide and 20 ng/zone for BPA, without toxicity for the yeast. To exclude cytotoxicity where anti-androgenic activity was observed, the HPTLC layers (either without or after the spraying with MUG) were sprayed with 3 mL resazurin solution (0.01 % in water) and incubated 30 min at 30 °C and 90 % humidity. Cytotoxicity bands appeared as pink zones of resorufin on a colorless background (dihydroresorufin) under white light. Densitometric evaluation in absorption mode at 575 nm (under deuterium and halogen-tungsten lamps, no filter applied). NQO was cytotoxic at its lowest tested dose (1 ng/zone).

      Classification: 4b, 4e, 32d, 37c, 37d
      130 001
      Separation and detection of apricot leaf triterpenes by high-performance thin-layer chromatography combined with direct bioautography and mass spectrometry
      Ágnes M. MÓRICZ*, P. G. OTT (*Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; moricz.agnes@agrar.mta.hu)

      J Chromatogr A, 1675, 463167 (2022). Samples were ethanol extracts (and their flash chromatography fractions) of Prunus armeniaca leaves (Rosaceae), as well as betulinic, linolenic, maslinic (= crataegolic), oleanolic, ursolic acids and pygenic acids A (= corosolic acid) and B b as standards. When needed, to improve separation of triterpenoids, reversible pre-chromatographic derivatization was performed in situ by applying 10 µL iodine solution (2 % in chloroform) either before development on the deposit band, or for 2D-HPTLC after a first separation up to 60 mm and before a second orthogonal separation. Layers were covered 10 min with glass sheet after iodine application, and then dried 1 min under cold air stream. HPTLC on silica gel with chloroform – ethyl acetate – methanol 20:3:2, 85:9:6, or 15:2:3), followed by 5-10 min drying under cold air stream (eliminating iodine completely). Post-chromatographic derivatization by immersion (time 2 s, speed 3 cm/s) into vanillin – sulfuric acid (40 mg and 200µL, respectively, in 10 mL ethanol), followed by heating 5 min at 110 °C. Antibacterial effect-directed analysis was performed by immersion (time 8 s) into Bacillus subtilis suspension, followed by 2 h incubation at 37 °C, immersion in MTT solution and 30 min incubation at 37 °C. Active bands were eluted from layer with methanol through the oval elution head of a TLC-MS interface pump, into a single quadrupole mass spectrometer to record full scan mass spectra (m/z 200–1200 in both modes) using electrospray ionization (interface temperature 350°C, heat block temperature 400°C, desolvation line temperature 250°C, detector voltage 4.5kV). Five triterpenoids were identified: betulinic, corosolic, maslinic, oleanolic and ursolic acids, acid, as well as two fatty acids: linolenic and palmitic acid.

      Classification: 4e, 11a, 15a, 32e
      130 002
      An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry
      O. GALARCE-BUSTOS, J. PAVÓN-PÉREZ, K. HENRÍQUEZ-AEDO, M. ARANDA*
      (*Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; maranda@udec.cl, maranda@gmx.net)

      J Chromatogr A, 1608, 460415 (2019). Samples were acetonitrile extracts of Annona cherimola fruit peel, pulp and seeds (Annonaceae), as well as caffeic acid as standards. HPTLC on silica gel with chloroform – ethyl acetate – propanol 21:2:2 for peel extracts, with chloroform – methanol 9:1 for seed extracts. Derivatization by spraying Dragendorff’s reagent for alkaloids, secondary amines and non-nitrogenous oxygenated compounds.  Effect-directed assay was performed for inhibitors of α-glucosidase. Before sample application, plates were developed with enzyme substrate (2-naphthyl-α-D-glucopyranoside 0.1 % in methanol) and dried 20 min at 60 °C. Then, samples were applied and separated, and mobile phase was removed by heating 10 min at 60 °C. The chromatogram was sprayed with 4 mL enzyme solution (5 unit/mL in 100 mM phosphate buffer,  pH 7.4), liquid excess was removed under lukewarm air stream, the plate was incubated 10 min at 37 °C in a moisture box, followed by spraying chromogenic reagent Fast Blue salt B 0.1 % in water, giving after 2 min white inhibition bands visible on purple background under white light. Plate image was documented under illumination (reflectance mode) with white light. The bands of 3 inhibiting compounds were analyzed in a triple quadrupole mass spectrometer. 1) Full scan mass spectra (m/z 50−1000) in the positive ionization mode were recorded using electrospray ionization (ESI, spray voltage 3 kV, desolvation line temperature 250 °C, block temperature 400 °C) for compounds directly eluted with methanol – acetonitrile through the oval elution head of a TLC-MS interface pump. 2) Compounds were also isolated (either eluted directly from the plate into a vial through the same interface, or scraped from the plate and extracted with methanol – chloroform into a vial), dried, and submitted to HPLC-DAD-MS/MS; MS-MS spectra were recorded in the same conditions, using argon as collision gas and collision cell voltages from -20 and -40 V. Inhibitors were identified as phenolamides (phenylethyl cinnamides): moupinamide (hRF 66 in peels, 56 in seeds), N-trans-feruloyl phenethylamine (hRF 76 in peels), N-trans-p-coumaroyl tyramine (hRF 44 in seeds).

      Classification: 4d, 4e, 7, 17c, 32e
      129 055
      Elicitation of antioxidant metabolites in Musa species in vitro shoot culture using sugar, temperature and jasmonic acid
      I.O. AYOOLA-ORESANYA, B. GUEYE, M.A. SONIBARE, M.T. ABBERTON, Gertrud E. MORLOCK* (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      Plant Cell, Tissue and Organ Culture (PCTOC) 146 (2), 225–236 (2021). Samples were hydro-ethanolic extracts of Musa acuminata and M. balbisiana (Musaceae) plantlets, obtained from in vitro meristem-derived gel cultures with saccharose, temperature or jasmonic acid as elicitors of production of secondary metabolites. HPTLC on silica gel  (RP18W phase for genotoxicity assay) with ethyl acetate – toluene – formic acid – water 34:5:7:5. Evaluation under white light, UV 254 nm and 366 nm. Effect-directed assays (EDA) were performed (by immersion or by automated piezoelectrical spraying) for free radical (DPPH•) scavengers, and, after neutralization, for enzymatic inhibitors (acetyl-cholinesterase, α-glucosidase) and for genotoxicity (SOS response – UMU-C test). For comparison, positive control standards were applied but not developed, before the assays (gallic acid, physostigmine, acarbose, nitroquinoline-1-oxide, respectively). After the first assay, absorbance densitometry was performed through inverse scanning at 546 nm using mercury lamp (fluorescence mode without optical filter). Antioxidant activity was found the highest when cultures were maintained at 20 °C (vs. 15 and 26 °C) and supplemented with saccharose (40-50 g/L) or jasmonic acid (200 µM).

      Classification: 4e, 32e
      129 060
      Detection of low levels of genotoxic compounds in food contact materials using an alternative HPTLC-SOS-Umu-C assay
      D. MEYER, M. MARIN-KUAN, E. DEBON, P. SERRANT, C. COTTET-FONTANNAZ, B. SCHILTER, Gertrud E. MORLOCK*
      (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      ALTEX - Alternatives to animal experimentation, 38(3), 387-397 (2021). Samples were standards of food contact contaminants with genotoxicity (4-nitroquinoline-1-oxide (NQO), aflatoxin B1, hexachloroethane, nitroso-ethylurea, phenformin, PhIP) or negative controls (alosetron, mannitol), and extracts of coated tin cans (extracted with n-hexane – acetone at 25°C for 16 h or by heating at 60 °C with ethanol 95 % for 240 h). HPTLC on RP18W layer, pretreated to harden the binder by heating 1 h at 120 °C, prewashed with methanol and with ethyl acetate and dried 4 min in cold air stream after each development. Application areas were focused to their upper edges by a two-fold elution with ethyl acetate, followed by 1 min drying in cold air stream. Development with toluene – ethyl acetate 8:5, followed by 5 min drying, neutralization with citrate buffer (pH 12) and 4 min drying. Effect-directed analysis for genotoxicity (SOS response – UMU-C test, using NQO as positive control) by immersion (speed 3.5 cm/s, time 3 s) into Salmonella typhimurium suspension and, after 3 h incubation at 37 °C and 4 min drying in cold air stream, into one of two fluorogenic substrate solutions (methylumbelliferyl- vs. resorufin-galactopyranoside). After 1 h incubation at 37 °C, visualization of mutagenic compounds as (blue vs. red) fluorescent zones at FLD 366 nm, and densitometry performed with mercury lamp for fluorescence (at  366 / >400nm vs. 550 / >580 nm, respectively). Further validation experiments, including spiking extracts with NQO, were performed showing good mean reproducibility, no quenching or other matrix effects. Lowest effective concentration of NQO was 0.53 nM (20 pg/band), 176 times lower than in the corresponding microtiter plate assays.

      Classification: 4e, 5c, 8b, 16, 23d, 23e, 32d