Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      130 028
      The effect of extractive lacto-fermentation on the bioactivity and natural products content of Pittosporum angustifolium (gumbi gumbi) extracts
      Snezana AGATONOVIC-KUSTRIN*, V. GEGECHKORI, D.W. MORTON
      (*Department of Pharmaceutical and Toxicological Chemistry, Institute of Pharmacy, Sechenov University, Moscow, Russia, and School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia; s.kustrin@latrobe.edu.au)

      J Chromatogr A, 1647, 462153 (2021). Samples were extracts of Pittosporum angustifolium leaves (Pittosporaceae), either pure or fermented 1-4 weeks in NaCl solution, as well as acarbose, gallic acid, β-sitosterol, caffeic and chlorogenic acids, as standards. HPTLC on silica gel (prewashed with methanol and dried 15 min at 105 °C) with n-hexane – ethyl acetate – acetic acid 15:9:1. Derivatization by immersion (speed 5 cm/s, time 1 s): (A) into DPPH• 0.2 % solution, to detect radical scavengers; (B) into neutralized ferric chloride (3 % in ethanol), followed by 5 min heating at 110 °C, for detection of phenolic compounds; (C) into anisaldehyde – sulphuric acid reagent, followed by 10 min heating at 110 °C, to detect terpenes and steroids. Effect-directed analysis (EDA) for α-amylase inhibition assay (D) by immersion into enzyme solution, incubation 15 min at 37 °C, immersion into substrate solution (starch 2 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). In all cases, visualization under white light. Quantification was performed on pictures using image processing software, and expressed as equivalents to the respective standards used for calibration curves: (A) and (B) gallic acid (LOQ 250 and 740 ng/band, respectively), (C) β-sitosterol (LOQ 1.5 µg/band), (D) acarbose (LOQ 8 µg/band). Zones of interest, scraped from untreated plates and washed with ethyl acetate, were submitted by ATR-FTIR analysis. An amylase inhibiting zone (hRF 85) present in all extracts was identified as fatty acid esters: ethyl palmitate in unfermented and methyl linoleate in fermented extracts. Moreover, fermented extracts contained antioxidant zones (hRF 15 – 20), identified as monomers and oligomers (including hydroxycinnamic, guaiacyl, syringyl derivatives) from decomposed lignin.

      Classification: 4e, 7, 8b, 11a, 32e
      130 142
      Bioassay-guided identification of α-amylase inhibitors in herbal extracts
      Snezana AGATONOVIC-KUSTRIN*, E. KUSTRIN, V. GEGECHKORI, D. W. MORTON (*Department of Pharmaceutical and Toxicological Chemistry, Institute of Pharmacy, Sechenov University, Moscow, Russia, and School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia; s.kustrin@latrobe.edu.au)

      J Chromatogr A, 1620, 460970 (2020). Samples were ethyl acetate extracts of Lavandula angustifolia herb and flowers and of aerial parts of other Lamiaceae (Ocimum basilicum, Origanum vulgare, Thymus vulgaris, Rosmarinus officinalis, Salvia officinalis), as well as standards. HPTLC on silica gel (pre-washed with methanol and heated 30 min at 105 °C) with n-hexane – ethyl acetate – acetic acid 70:27:3. Documentation at UV 254 nm and 365 nm and white light before and after A) derivatization with anisaldehyde – sulfuric acid reagent, followed by 10 min heating at 110 °C; B) spraying with DPPH• (0.2 % in methanol), followed by 30 min incubation in the dark; C) α-amylase inhibition assay by immersion into enzyme solution, incubation 30 min at 37 °C, immersion into substrate solution (starch 1 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). Quantification was performed on pictures using image processing software, and expressed as equivalents to the respective standards used for calibration curves: A) β-sitosterol (LOQ 1.5 µg/band), B) gallic acid (LOQ 60 ng/band), C) acarbose (LOQ 8 µg/band). An amylase inhibiting zone (hRF 68) present in all samples (except L. angustifolia), scraped from untreated plates and washed with ethyl acetate, was tentatively identified by ATR-FTIR analysis as oleanolic acid (pentacyclic triterpene).

      Classification: 4e, 15a, 32e
      130 004
      Identification of acetylcholinesterase inhibitors in water by combining two-dimensional thin-layer chromatography and high-resolution mass spectrometry
      Lena STÜTZ*, W. SCHULZ, R. WINZENBACHER (*Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Langenau, Germany; stuetz.l@lw-online.de)

      J Chromatogr A, 1624, 461239 (2020). Samples were chemical standards of acetylcholinesterase (AChE) inhibitors (azamethiphos, caffeine, donepezil, galanthamine, methiocarb-sulfoxide, paraoxon-ethyl) and of neurotoxic compounds, as well as drinking or contaminated water samples enriched through solid phase extraction. HPTLC on spherical silica gel (pre-washed twice by 20 min immersion in isopropanol, heated 20 min at 120 °C before and after pre-washing with acetonitrile). First separation (preparative TLC) with automated multiple development (16 steps). Effect-directed analysis for AChE inhibitors by immersion (speed 5 cm/s, time 1 s) into enzyme solution, incubation 5 min at 37 °C and immersion into substrate solution (indoxyl acetate 2 % in methanol); visualization under UV 366 nm. Active zones from untreated layers were eluted through the oval head of a TLC-MS interface to a second plate for a second separation with a panel of other mobile phases. Bands of interest were eluted from the second layer with water through the oval elution head of the TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole time-of-flight mass spectrometer. Full scan mass spectra (m/z 100–1200) were recorded in negative and positive modes using electrospray ionization (and collision-induced dissociation for MS2). Among the water contaminants, lumichrome (riboflavin photolysis product), paraxanthine and linear alkylbenzene sulfonates were identified as AChE inhibitors.

      Classification: 3d, 4d, 4e, 22, 29b, 35d, 37c
      130 002
      An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry
      O. GALARCE-BUSTOS, J. PAVÓN-PÉREZ, K. HENRÍQUEZ-AEDO, M. ARANDA*
      (*Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Concepción, Chile; maranda@udec.cl, maranda@gmx.net)

      J Chromatogr A, 1608, 460415 (2019). Samples were acetonitrile extracts of Annona cherimola fruit peel, pulp and seeds (Annonaceae), as well as caffeic acid as standards. HPTLC on silica gel with chloroform – ethyl acetate – propanol 21:2:2 for peel extracts, with chloroform – methanol 9:1 for seed extracts. Derivatization by spraying Dragendorff’s reagent for alkaloids, secondary amines and non-nitrogenous oxygenated compounds.  Effect-directed assay was performed for inhibitors of α-glucosidase. Before sample application, plates were developed with enzyme substrate (2-naphthyl-α-D-glucopyranoside 0.1 % in methanol) and dried 20 min at 60 °C. Then, samples were applied and separated, and mobile phase was removed by heating 10 min at 60 °C. The chromatogram was sprayed with 4 mL enzyme solution (5 unit/mL in 100 mM phosphate buffer,  pH 7.4), liquid excess was removed under lukewarm air stream, the plate was incubated 10 min at 37 °C in a moisture box, followed by spraying chromogenic reagent Fast Blue salt B 0.1 % in water, giving after 2 min white inhibition bands visible on purple background under white light. Plate image was documented under illumination (reflectance mode) with white light. The bands of 3 inhibiting compounds were analyzed in a triple quadrupole mass spectrometer. 1) Full scan mass spectra (m/z 50−1000) in the positive ionization mode were recorded using electrospray ionization (ESI, spray voltage 3 kV, desolvation line temperature 250 °C, block temperature 400 °C) for compounds directly eluted with methanol – acetonitrile through the oval elution head of a TLC-MS interface pump. 2) Compounds were also isolated (either eluted directly from the plate into a vial through the same interface, or scraped from the plate and extracted with methanol – chloroform into a vial), dried, and submitted to HPLC-DAD-MS/MS; MS-MS spectra were recorded in the same conditions, using argon as collision gas and collision cell voltages from -20 and -40 V. Inhibitors were identified as phenolamides (phenylethyl cinnamides): moupinamide (hRF 66 in peels, 56 in seeds), N-trans-feruloyl phenethylamine (hRF 76 in peels), N-trans-p-coumaroyl tyramine (hRF 44 in seeds).

      Classification: 4d, 4e, 7, 17c, 32e
      129 069
      Distinction and valorization of 30 root extracts of five goldenrod (Solidago) species
      Ágnes M. MÓRICZ*, M. JAMSHIDI-AIDJI, D. KRÜZSELYI, A. DARCSI, A. BÖSZÖRMÉNYI, P. CSONTOS, S. BÉNI, P.G.OTT, G.E. MORLOCK (*Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022 Budapest, Hungary; moricz.agnes@atk.hu)

      J Chromatogr A, 1611, 460602 (2020). Samples were methanolic root macerates of Euthamia graminifolia, Solidago canadensis, S. gigantea, S. rugosa and S. virgaurea (Asteraceae). HPTLC on silica gel with n-hexane – isopropyl acetate – acetone 16:3:1; or (for preparative TLC) on TLC silica gel with n-hexane – acetone 7:3, followed by scraping the layer and eluting with ethanol. When intended for MS experiments, layers were previously washed with methanol – water 4:1 and heated 20 min at 100 °C. Derivatization with vanillin – sulfuric acid reagent. Multivariate image analysis of the derivatized chromatograms allowed clear separation of samples according to species. Effect-directed analysis for: A) enzymatic inhibition by immersion into acetyl- and butyryl-cholinesterase, glucosidase and amylase solutions; B) activity against Gram-negative bacteria using Xanthomonas euvesicatoria chromogenic bioassay, and Aliivibrio fischeri and Pseudomonas syringae maculicola bioluminescence assays; C) activity against Gram-positive bacteria with Bacillus subtilis spizizenii bioassay. Two labdane diterpenes (solidagenone, hRF 47, and presolidagenone, hRF 55) in S. canadensis and two polyacetylenes (matricaria-esters = methyl-decadiene-diynoates, hRF 78 and 87 in HPTLC) in S. virgaurea were identified from multipotent zones by bioassay-guided purification through preparative TLC / HPLC, followed by HRMS and NMR, as well as by HPTLC hyphenated to quadrupole-orbitrap HRMS in 2 ways: A) by eluting with methanol the compounds from the plate through the oval elution head of a TLC-MS interface, with heated electro-spray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C, nitrogen as sheath and auxiliary gas, full scan in negative and positive ionization modes in m/z range 50-750); tandem mass spectra were acquired in parallel at fragmentation energy of 15-100 eV; B) without eluent with a DART interface (Direct Analysis in Real-Time, needle voltage 4 kV, grid voltage 50 V, helium as gas, temperature 500 °C, full scan in positive ionization mode in m/z range 100-750).

      Classification: 4d, 4e, 8b, 11a, 15a, 32e
      129 059
      Same analytical method for both (bio)assay and zone isolation to identify/quantify bioactive compounds by quantitative nuclear magnetic resonance spectroscopy
      E. AZADNIYA, L. GOLDONI, T. BANDIERA, Gertrud E. MORLOCK* (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1616, 461434 (2020). Samples were acetonic extracts of Malus domestica fruit peels (Rosaceae) and of Salvia officinalis, Thymus vulgaris and Origanum vulgare spice powders (Lamiaceae), as well as standards of maleic acid (dicarboxylic acid), carvacrol, thymol (phenolic monoterpenes), rosmanol (phenolic diterpene), betulinic acid, corosolic acid (CA), maslinic acid (MA), oleanolic acid (OA) and its isomer ursolic acid (UA) (triterpenes). HPTLC on silica gel, when intended for MS and NMR experiments, layers were prewashed twice with methanol – water 3:1, followed by 30 min drying at 120 °C. When intended for quantitative densitometry, start zones were submitted to prechromatographic derivatization with iodine solution (10 g/L in chloroform) allowed to migrate up to 12 mm, incubated 10 min at 27 °C and dried under cold air stream; this allowed separation of isomeric triterpenes. Separation with toluene – methanol – ethyl acetate 17:2:1 after 5 min chamber saturation at 50 % relative humidity. CA coeluted with MA, and OA with UA. Four hyphenations: A) Quantitative HPTLC densitometry for active analytes was performed by measuring absorption at 665 nm with a tungsten lamp after immersion of the chromatograms in anisaldehyde sulfuric acid reagent and heating 5 min at 110 °C. Linear range was obtained at 25 - 200 ng/band for OA and 100 - 400 ng/band for UA. B) Effect-directed analysis by immersing the chromatograms into Gram-positive Bacillus subtilis suspension for antibacterial activity and into acetyl-cholinesterase and tyrosinase solutions for enzymatic inhibition. C) Active bands were eluted with methanol through the oval elution head and in-line filter frit of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 100−1000) in the positive and negative ionization modes were recorded using heated electrospray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C, probe heater temperature 200 °C). D) With higher amounts applied, preparative HPTLC, by scraping the multipotent band corresponding to OA and UA, and dissolving these analytes in methanol, for NMR analyses (1H raw or deconvoluted, and 2D 1H–13C Heteronuclear Single Quantum Coherence). Both isomers were distinguished by their allylic H-18 protons and separately quantified by applying PULCON method (PUlse Length-based CONcentration). LOQ was 267 μM for OA and 173 μM for UA; optimal range was 300 – 4600 mM, corresponding to 126 - 2090 μg of triterpenes.

      Classification: 4e, 7, 11a, 15a, 32e
      127 005
      Utilization of a crown ether/amine‐type rotaxane as a probe for the versatile detection of anions and acids by Thin‐Layer Chromatography.
      S. MIYAGAWA, M. KIMURA, S. KAGAMI, T. KAWASAKI, Y. TOKUNAGA* (*Department of Materials Science and Engineering, University of Fukui, Bunkyo, Fukui, Japan; tokunaga@u-fukui.ac.jp)

      Chem. Asian J. 15(19), 3044-3049 (2020). The studied rotaxane combines a dibenzocrown of 8 ethers (DB24C8) with an axle chain (Ax) containing two amines, one of them in an aniline group, allowing stability of the rotaxane even when the other one is unprotonated. TLC on silica gel in 4 steps, with detection under UV light or after derivatization with phosphomolybdic acid in ethanol. (1) Before the synthesis of the rotaxane, unprotonated Ax was isolated by preparative TLC of the protonated Ax obtained by addition of HCl or toluenesulfonic acid (TsOH); the mobile phases were chloroform – methanol 10:1 and toluene – tetrahydrofurane 3:2, respectively. The isolated molecules were confirmed as totally unprotonated Ax by NMR, suggesting a complete loss of HCl and TsOH on the silica gel layer. (2) After synthesis, unprotonated rotaxane, pure vs. monoprotonated by the addition of 10 different acids (and purified by column chromatography CC), was applied on TLC plates and developed with dichloromethane – acetone – water 3:16:1; the hRF values were very different, depending on the counter-anions from the used acids. (3) The same behavior (except with sulfuric acid) was observed under the same conditions when CC was omitted (unprotonated rotaxane samples were mixed with each of the acids, or with two acids at the same time for acid-competitive TLC analysis). (4) When unprotonated rotaxane was applied under the same conditions as in step (3) with the sodium salts instead of the acids, the behavior was similar (except for the shapes of the spots, due to the salts in excess). The rotaxane can thus be used for the TLC separation and detection of sodium salts, by forming salts of protonated rotaxane with the anion afforded by these sodium salts. The rotaxane protonation seems to be promoted by the methanol of the spotting mixture; indeed, when step (3) was performed with the mobile phase chloroform – methanol 10:1, a second zone appeared because methanol formed a salt with the rotaxane (identified by NMR).

      Classification: 4e, 5a, 5b, 17a
      126 020
      New hirsutinolide-type sesquiterpenoids from Vernonia cinerea inhibit nitric oxide production in LPS-stimulated RAW264.7 cells
      Li-Ming YANG KUO, Pei-Yi TSENG, Yu-Chi LIN, Chia-Ching LIAW, Li-Jie ZHANG, Keng-Chang TSAI, Zhi-Hu LIN, Hsiu-O HO*, Yao-Haur KUO (*School of Pharmacy, Taipei Medical University, Taipei, Taiwan; hsiuoho@tmu.edu.tw)

      Planta Med. 84(18), 1348-1354 (2018). A subfraction (obtained through liquid-liquid partition and column chromatography) of the ethanolic extract of whole Vernonia cinerea plants (Asteraceae, subf. Cichorioideae) was further fractioned by reverse-phase SPE (solid-phase extraction) followed by preparative TLC on silica gel layer (eluent not given). For verification, zones were detected by spraying with anisaldehyde solution with 10 % sulfuric acid, followed by heating at 100 °C. Further purification by reverse-phase HPLC allowed the isolation of 6 hirsutinolide-type sesquiterpenoids (all with a oxacyclonane forming an ether bridge), including vernolides A and B.

      Classification: 8b, 9, 15a, 32e