Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

Page
      130 004
      Identification of acetylcholinesterase inhibitors in water by combining two-dimensional thin-layer chromatography and high-resolution mass spectrometry
      Lena STÜTZ*, W. SCHULZ, R. WINZENBACHER (*Laboratory for Operation Control and Research, Zweckverband Landeswasserversorgung, Langenau, Germany; stuetz.l@lw-online.de)

      J Chromatogr A, 1624, 461239 (2020). Samples were chemical standards of acetylcholinesterase (AChE) inhibitors (azamethiphos, caffeine, donepezil, galanthamine, methiocarb-sulfoxide, paraoxon-ethyl) and of neurotoxic compounds, as well as drinking or contaminated water samples enriched through solid phase extraction. HPTLC on spherical silica gel (pre-washed twice by 20 min immersion in isopropanol, heated 20 min at 120 °C before and after pre-washing with acetonitrile). First separation (preparative TLC) with automated multiple development (16 steps). Effect-directed analysis for AChE inhibitors by immersion (speed 5 cm/s, time 1 s) into enzyme solution, incubation 5 min at 37 °C and immersion into substrate solution (indoxyl acetate 2 % in methanol); visualization under UV 366 nm. Active zones from untreated layers were eluted through the oval head of a TLC-MS interface to a second plate for a second separation with a panel of other mobile phases. Bands of interest were eluted from the second layer with water through the oval elution head of the TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole time-of-flight mass spectrometer. Full scan mass spectra (m/z 100–1200) were recorded in negative and positive modes using electrospray ionization (and collision-induced dissociation for MS2). Among the water contaminants, lumichrome (riboflavin photolysis product), paraxanthine and linear alkylbenzene sulfonates were identified as AChE inhibitors.

      Classification: 3d, 4d, 4e, 22, 29b, 35d, 37c
      130 006
      Thin-layer chromatography with eutectic mobile phases – preliminary results
      Danuta RAJ* (*Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wroclaw, Poland; danuta.raj@umed.wroc.pl)

      J Chromatogr A, 1621, 461044 (2020). Samples were five isoquinoline alkaloids (berberine, chelerythrine, chelidonine, coptisine, sanguinarine) either as standard mixture or present in a Chelidonium majus (Papaveraceae) herb extract obtained with HCl 0.05 M in methanol. Separation on TLC and HPTLC silica gel layers with a screening of mobile phases consisting of eutectic mixtures of chemicals and/or phytochemicals. These homogenous stable liquids called DES (deep eutectic solvents) were obtained either simply by mixing, or by mixing followed by heating at 50°C, or by mixing with water for dissolution followed by dehydratation through rotary evaporation. For polarity adjustment, the DES phases were tested pure or diluted with acetone, chloroform, diethyl ether, methanol, or water. Visualization under UV 366 nm. The best separation was obtained with menthol – phenol in equimolar mixture, with 35 % methanol added (hRF values of the selected alkaloids were 33, 39, 79, 20 and 52, respectively).

      Classification: 22, 32e
      130 008
      High performance thin-layer chromatography–mass spectrometry methods on diol stationary phase for the analyses of flavan-3-ols and proanthocyanidins in invasive Japanese knotweed
      V. GLAVNIK, Irena VOVK* (*National Institute of Chemistry, Ljubljana, Slovenia; irena.vovk@ki.si)

      J Chromatogr A, 1598, 196-208 (2019). Samples were acertone – water 7:3 extracts of Reynoutria japonica (= Fallopia japonica = Polygonum cuspidatum) rhizomes (Polygonaceae) as well as flavanols (catechin, epicatechin, epicatechin gallate, epigallocatechin gallate) and procyanidins (A1, A2, B1–B3 and C1) as standards. HPTLC on diol silica gel with: (MP1) acetonitrile; (MP2) ethyl acetate; (MP3) ethyl acetate – formic acid 90:1; or (MP4) toluene – acetone – formic acid 3:6:1. Prewashing of the plates with mobile phase was needed only with MP1. After drying under hot air stream, derivatization by automated immersion into DMACA (dimethylaminocinnamaldehyde) – HCl solution (60 mg in 13 mL HCl + 187 mL ethanol), followed by 2 min drying under warm air stream. Visualization under UV 366 nm and white light, densitometry in absorption/reflectance mode at 280 nm (before derivatization) or 655 nm (10 min after derivatization). Bands of interest were eluted from layer with acetonitrile – methanol 2:1 through the oval elution head of a TLC-MS interface pump, into a RP18 liquid chromatography guard column, followed by a quadrupole ion trap mass spectrometer. Full scan mass spectra (m/z 150–2000) were recorded in negative mode using electrospray ionization (spray voltage 4 kV, capillary temperature 200◦C, capillary voltage -38.8 V). Monomer gallates to hexamer gallates were detected, separated with MP1, MP2 or MP4; monomers and oligomers (not gallates) were separated with MP3 (up to hexamers) and with MP1 and MP4 (up to decamers). Moreover, enhanced absorption of standards was also studied for influence of mobile phases, of layers (diol silica gel vs. classical silica gel vs. cellulose) and of luminosity (light vs. dark).

      Classification: 4e, 8a, 8b, 32e
      130 007
      Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity
      C. RIEGRAF, A.M. BELL, M. OHLIG, G. REIFFERSCHEID, S. BUCHINGER* (*Federal Institute of Hydrology, Koblenz, Germany; buchinger@bafg.de)

      J Chromatogr A, 1684, 463582 (2022). Samples were concentrated filtrates of leachates of waste deposition sites, as well as testosterone, flutamide, bisphenol A (BPA) and nitroquinoline oxide (NQO) as standards. Automated Multiple Development on HPTLC silica gel (prewashed with methanol and dried 30 min at 110 °C) with 1) methanol up to 20 mm; 2A) chloroform – ethyl acetate –petroleum ether 11:4:5 or 2B) ethyl acetate – n-hexane 1:1 for flutamide and testosterone, up to 90 mm. Effect-directed analysis was performed by automated spraying 3 mL suspension of BJ1991 yeast (transfected Saccharomyces cerevisiae strain, pure for androgenic activity, with 50 ng/mL testosterone for anti-androgenic assay), followed by 20 h incubation at 30 °C in a closed chamber (90 % relative humidity), by 5 min drying under cold air stream, by spraying 2.5 mL MUG solution (4-methylumbelliferyl-galactopyranoside) and by 15 min incubation at 37 °C in an open chamber. Agonistic and antagonistic activities were detected qualitatively under UV 366 nm (light or dark blue bands, respectively, on blue background) and quantitatively documented using automated scanning at excitation wavelength 320 nm (deuterium lamp), with cut-off filter at 400 nm. Dose-response curves for model compounds were established by regression analysis. Anti-androgenic effective doses at 10 % were 28 ng/zone for flutamide and 20 ng/zone for BPA, without toxicity for the yeast. To exclude cytotoxicity where anti-androgenic activity was observed, the HPTLC layers (either without or after the spraying with MUG) were sprayed with 3 mL resazurin solution (0.01 % in water) and incubated 30 min at 30 °C and 90 % humidity. Cytotoxicity bands appeared as pink zones of resorufin on a colorless background (dihydroresorufin) under white light. Densitometric evaluation in absorption mode at 575 nm (under deuterium and halogen-tungsten lamps, no filter applied). NQO was cytotoxic at its lowest tested dose (1 ng/zone).

      Classification: 4b, 4e, 32d, 37c, 37d
      130 001
      Separation and detection of apricot leaf triterpenes by high-performance thin-layer chromatography combined with direct bioautography and mass spectrometry
      Ágnes M. MÓRICZ*, P. G. OTT (*Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; moricz.agnes@agrar.mta.hu)

      J Chromatogr A, 1675, 463167 (2022). Samples were ethanol extracts (and their flash chromatography fractions) of Prunus armeniaca leaves (Rosaceae), as well as betulinic, linolenic, maslinic (= crataegolic), oleanolic, ursolic acids and pygenic acids A (= corosolic acid) and B b as standards. When needed, to improve separation of triterpenoids, reversible pre-chromatographic derivatization was performed in situ by applying 10 µL iodine solution (2 % in chloroform) either before development on the deposit band, or for 2D-HPTLC after a first separation up to 60 mm and before a second orthogonal separation. Layers were covered 10 min with glass sheet after iodine application, and then dried 1 min under cold air stream. HPTLC on silica gel with chloroform – ethyl acetate – methanol 20:3:2, 85:9:6, or 15:2:3), followed by 5-10 min drying under cold air stream (eliminating iodine completely). Post-chromatographic derivatization by immersion (time 2 s, speed 3 cm/s) into vanillin – sulfuric acid (40 mg and 200µL, respectively, in 10 mL ethanol), followed by heating 5 min at 110 °C. Antibacterial effect-directed analysis was performed by immersion (time 8 s) into Bacillus subtilis suspension, followed by 2 h incubation at 37 °C, immersion in MTT solution and 30 min incubation at 37 °C. Active bands were eluted from layer with methanol through the oval elution head of a TLC-MS interface pump, into a single quadrupole mass spectrometer to record full scan mass spectra (m/z 200–1200 in both modes) using electrospray ionization (interface temperature 350°C, heat block temperature 400°C, desolvation line temperature 250°C, detector voltage 4.5kV). Five triterpenoids were identified: betulinic, corosolic, maslinic, oleanolic and ursolic acids, acid, as well as two fatty acids: linolenic and palmitic acid.

      Classification: 4e, 11a, 15a, 32e
      130 113
      Recent findings by high‑performance thin‑layer chromatographic separation for a comprehensive analysis of Withania somnifera by densitometry and mass spectrometry: an assessment to quality and adulteration
      S. GHOSHAL, C. GHULE, A. MIRGAL, A. GIRME*, L. HINGORANI (*Pharmanza Herbal Pvt. Ltd., Anand, Gujarat 388430, India, ardm@pharmanzaherbals.com)

      J. Planar Chromatogr. 35, 439-451 (2022). HPTLC of withanoside IV (1), withanoside V (2), withaferin A (3), and kaempferol-based glucoside (4) in the roots and aerial parts of Withania somnifera on silica gel with ethyl acetate - chloroform - methanol - water 40:15:22:9. Detection of (1) to (3) by spraying with anisaldehyde sulfuric acid reagent, followed by heating at 100 °C for 3 min. Quantitative determination by absorbance measurement at 540 nm for (1) to (3) and 254 nm for (4). The hRF values for (1) to (4) were 33, 42, 62 and 21, respectively. Linearity was between 200 and 1000 ng/zone for (3) and (4) and 400 and 2000 ng/zone for (1) and (2). Interday and intra-day precisions were below 4 % (n=6). The LOD and LOQ were 180 and 544 ng/zone for (1), 215 and 652 ng/zone for (2), 170 and 516 ng/zone for (3) and 48 and 144 ng/zone for (4). Recovery was between 95.9 and 99.6 % for (1) and (4).

      Classification: 8a, 14
      130 114
      Simultaneous ultra‑sensitive analysis of tamsulosin hydrochloride and tolterodine tartrate binary mixture in their dosage form via high‑performance thin‑layer chromatography with fluorimetric detection
      M. RIZK, Z. MAHMOUD*, M. AZAB (*Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt, Zainab.MansourMahmoud@pharm.helwan.edu.eg)

      J. Planar Chromatogr. 35, 509-517 (2022). HPTLC of tamsulosin hydrochloride (1) and tolterodine tartrate (2) binary mixture on silica gel with ethyl acetate - n-hexane - diethylamine 9:3:1. Quantitative determination by absorbance measurement at 225 nm. The hRF values for (1) and (2) were 40 and 85, respectively. Linearity was between 10 and 200 ng/zone for (1) and 100 and 900 ng/zone for (2). The LOD and LOQ were 3 and 8 ng/zone for (1) and 22 and 66 ng/zone for (2), respectively. Average recovery was 100.1 % for (1) and 100.7 5 for (2).

      Classification: 32a
      130 115
      ICH and US‑FDA validated HPTLC methods with greenness assessments for the assay of mixtures prescribed in stroke prophylaxis: application to pharmaceutical preparations and human plasma
      M. HAMDY*, M. KORANY, S. EBIED, R. HAGGAG (*Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt, mohamed.hamdy@pua.edu.eg)

      J. Planar Chromatogr. 35, 519-532 (2022). HPTLC of binary mixtures of the novel oral anticoagulants (NOACs) apixaban (1), edoxaban tosylate (2) and rivaroxaban (3) with the lipid-lowering statin, rosuvastatin calcium (4) on silica gel with toluene - ethyl acetate - methanol - 25 % ammonia 35:45:20:2 (method 1) for the three mixtures, and methanol - 25 % ammonia 199:1 (method 2) for (2)/(3) mixture only. Quantitative determination by absorbance measurement at 291 nm. The hRF values for (1) to (4) were 65, 20, 75 and 10 using method 1, and 40 for (2) and 90 for (4) using method 2. Linearity was between 5 and 45 µg/mL for (1) to (4). Interday and intra-day precisions were below 3 % (n=6). The LOD and LOQ were 0.1 and 0.4 µg/mL for (1), 1 and 4 µg/mL for (2) and (3), 0.4 and 1 µg/mL for (4) using method 1, and 1.4 and 4.7 µg/mL for (2) and 0.4 and 1.2 µg/mL for (4) using method 2. Average recovery was between 97.6 and 102.9 % for (1) to (4).

      Classification: 32a
Page