Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      130 081
      Applicability of the Universal Mixture for describing system suitability and quality of analytical data in routine normal phase High Performance Thin Layer Chromatography methods
      M. SCHMID, T.K. Tiên Do*, I. TRETTIN, E. REICH (*CAMAG, Muttenz, Switzerland; tien.do@camag.com)

      J Chromatogr A 1666, 462863 (2022). Theoretical discussion on the factors determining the RF value of a given substance in a chromatographic system: A) the stationary phase (SP); B) the mobile phase (MP), the composition of which can be different from the solvent mixture prepared because of evaporation, saturation and liquid or gas adsorption effects over migration time; C) the difference of the free energies for the analyte transfer from SP to MP; D) external parameters like temperature and humidity. The universal HPTLC mixture (UHM) is a mixture of reference compounds that can be used for the system suitability test (SST) for the full RF range in all HPTLC experiments. Its composition is: thioxanthen-9-one (0.001 %), guanosine (0.05 %), phthalimide (0.2 %), 9-hydroxyfluorene, octrizole, paracetamol, sulisobenzone and thymidine (each 0.1 %), in methanol. The purpose was to study the potential of UHM to replace SST (described with specific markers in European Pharmacopoeia monographs) and to assess the quality of HPTLC results. TLC and HPTLC silica gel on different support (aluminium, glass) or with different granulometries and binders (classic, Durasil, Adamant), of the UHM, an acetonitrile extract of Abelmoschus manihot flowers (Malvaceae), a methanol extract of Sambucus canadensis flowers (Adoxaceae), and essential oils of Lavandula angustifolia, of Mentha × piperita (Lamiaceae) and of Myristica fragrans (Myristicaceae), as well as the following specific markers (standards): borneol, bornyl acetate, linalool, linalyl acetate (terpenoids), isoeugenol, isoeugenol acetate, chlorogenic acid (phenylpropanoids), gossypin (flavone), gossypetin-glucuronide, hyperoside (flavonol heterosides). Development (after 20 min plate conditioning with a saturated MgCl2 solution) with one of the following mobile phases: (MP1) toluene – ethyl acetate 19:1, especially for essential oils; (MP2) ethyl acetate – butanone – formic acid – water 5:3:1:1, especially for S. canadensis; (MP3) ethyl acetate – acetic acid – formic acid – water 100:11:11:26, especially for A. manihot. Documentation in UV 254 nm and 350 nm, and with white light (reflection + transmission), before and after derivatization. RF values were determined by scanning densitometry at 254 nm in absorption mode (for octrizole, at 366 nm in fluorescence mode with mercury lamp and optical filter K400 nm). For each HPTLC condition, intra-laboratory precision assay of UHM separation was performed (at least 5 analyses) with average RF values and 95 % prediction intervals, and calculating RF differences between pairs of UHM constituents and 95 % confidence intervals, which were max. +/-0.012 of the RF values for all UHM and markers. The sensitivity of UHM, and thus its usefulness as generic SST was demonstrated by repeating the HPTLC experiments with modifying by 10 % the quantity of one of the solvent each time. There were always significant changes in RF values of UHM components and/or in RF differences between pairs of UHM bands; it was often but no always the case with the official specific markers. UHM underwent also significant changes (although less than A. manihot extract) when several silica gel phases were compared under the same HPTLC conditions. This property is crucial to verify the right stationary phase before doing any RF correlations, and could make UHM a universal tool to identify discrepancies between different analyses. Finally, the use of UHM for a computer-supported evaluation of HPTLC results was discussed, either for zone identification and RF corrections (within confidence intervals), or for correlations of entire fingerprints as first step to implement machine learning algorithms.

      Classification: 2a, 2f, 3g, 7, 8a, 15a, 15b, 32e
      130 023
      Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances
      F. LEONG (Leong Fong), X. HUA (Hua Xue), M. WANG (Wang Mei), T. CHEN (Chen Tongkai), Y. SONG (Song Yuelin), P. TU (Tu Pengfei), X. CHEN (Chen Xiao-Jia)* (*State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; xiaojiachen@um.edu.mo)

      Chinese Medicine 15, 76 (2020). This review compared the 2020 editions of Chinese (ChP) and European Pharmacopoeas (EuP) in different aspects of quality control of traditional Chinese medicinal plants (73 of which drugs were common to both, but with differences in species or organs for 17 of them). Discussed points included history, identification, plant origin and processing, sample preparation, marker selection, tests and assays, as well as advanced analytical techniques for quality control and for the establishment of comprehensive quality standard. TLC was discussed in relation to its following aspects: purposes, markers/references, techniques and result description.
      (A) The main uses of TLC and HPTLC were (1) chemical-based identification of the plant in a more accurate and precise method than by macroscopic and microscopic observation only, and in a more direct and easily interpretation than HPLC, and allowing the simultaneous analysis of multiple samples in parallel; (2) control of possible adulterants; (3) quantification of active compounds. Both uses (1) and (2) were combined in some EuP monographs: as example were given the roots of Angelica dahurica, A. pubescens, A. sinensis, using TLC for identification of the species and of adulterants from other species (Angelica, Levisticum and Ligusticum).
      (B) In ChP, identification through TLC was in most cases achieved by fingerprint comparison to an official reference extract or herb (herbal reference substance). At the opposite, EuP often indicated analytical markers, irrespective of any pharmacological activity, but chosen only for analytical purposes in TCM identification and quantification. Examples were: aescin and arbutin as analytical markers for TLC identification of Anemarrhena asphodeloides rhizome and Panax notoginseng root.
      For the TLC system suitability assessment tests, ChP used the same intensity markers or active markers that were chosen for the identification or assay; whereas EuP often used other specific references, e.g. isoeugenol and methyleugenol in the case of Ophiopogon japonicus roots.
      (C) For the techniques, conventional separations and chemical derivatizations were used. Hyphenations of TLC to other analytical methods (e.g. MS) were absent. Only one monograph applied an effect-directed analysis directly on TLC chromatogram (free DPPH• radical scavenging assay for TLC identification of Rehmannia glutinosa root, in ChP).
      Sometimes, the TLC methods were different between both reference books for the same species. Example was given for Belamcanda chinensis (=Iris domestica) rhizome: in EuP, development on silica gel with cyclohexane – ethyl acetate – acetic acid 20:80:1, detection under UV 254 nm, comparison to standards coumarin and irisflorentin; whereas in ChP, development on polyamide layer with chloroform – butanone – methanol (3:1:1), detection under UV 365nm after derivatization with aluminium chloride, comparison to a reference rhizome powder.
       (D) Finally, the results in ChP were described as a text stating the similarity of sample profile with the profile of the chosen reference, whereas the results in EuP were described with a schematic box indicating the positions of bands of interest.

      Classification: 1, 2a, 32e
      57 014
      Selection of optimal chromatographic system for 13 barbiturates
      ZH. LUO (Luo Zhiguan)

      Abstracts of 1985 Beijing Conference and Exhibition on Instrumental Analysis, 528, (1985). Utilization of relative scattered target (RST), set pattern count (SPC) and stepwise combination (SC) in selecting the optimal TLC system for 13 barbiturates from 14 different systems SC method was found best.

      Keywords:
      Classification: 2a
      59 015
      (The application of system combination methods in selection of optimization of solvent systems for thin-layer chromatography to 16 hormonal drugs
      SH. XUE (Xue Shunguo), M. YANG (Yang Maochun), (Xiangfan Inst. Drug Cont., Xiangfan, P.R. China). Chinese J. Pharm. Anal. (Yaowu Fenxi Zazhi) 6, 108-110 (1986) (Chinese)

      Comparison of 5 methods for selecting the best solvent combinations from 34 systems in TLC of 16 steroid hormonal drugs with systematic combination as the best

      Keywords:
      Classification: 2a
      62 010
      The role of the vapor phase in planar chromatography
      F. GEISS, (Joint Res. Centre, Commission EC, 1-21020 Ispra, Italy)

      J. Planar Chromatogr. 1, 102-115 (1988). Discussion of the role of the vapor phase in TLC, stressing on the influence of gaseous solvent molecules on sorbent-solvent sorbent-water, water-solvent, sorbent-water-solvent, solvent- solvent interactions, with experimental data related to pre-conditioning. Description of the methods controlling chromatographic behavior of layer locally via pre-conditioning gradients.

      Keywords:
      Classification: 2a
      65 006
      Testing and validation of TLC scanner
      J. ALLWOHN, S. EBEL*, (*Univ. of Würzburg, Dep. of Pharm., Am Hubland, D-8700 Würzburg, FRG)

      J. Planar Chromatogr. 2, 71-75 (1989). A validation procedure for TLC scanners is presented including determination of signal to noise ratios and instrumental sensitivity. Using test plates, the overall reliability can be determined. Validation of individual parts of the software is done by comparison of different algorithms, for example smoothing algorithms. Validation of spotting devices is shown to be possible by analysis of variances from different types of scans in order to separate errors created by positioning and measurement.

      Classification: 2a, 4c
      68 021
      Theoretical foundations of optical quantitation
      V.A. POLLAK, (Univ. Saskatchewan, Saskatoon, SK, Canada)

      Chromatogr. Sci. 55, 249-281 (1991). A review with 87 references on theoretical foundations of quantitative analysis in TLC by optical means as well as in electrophoretic separations on optically similar media.

      Keywords: review
      Classification: 2a, 36
      78 015
      (Ion exchange interaction on silica gel in thin-layer chromatography
      O. VOLFORD*, M. TAKACS, J. VAMOS, (SOTE Univ., H-1092 Budapest, Hîgyes E.u.8, Hungary)

      Part IV. On plate investigations by UV spectroscopy.) (Hungarian). Acta Pharmaceutica Hungarica 66, 133-140 (1996). TLC of phenobarbital, sulfinpyrazone, sulfacetamide, benzoic acid, salicylic acid (and their Na-salts), papaverine hydrochloride on silica with chloroform - ethanol 9:1. Visualization under UV366 nm; densitometry at 200 nm.

      Classification: 2a, 32a