Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      130 025
      Hepatoprotective effect of ethanolic extract of Trichosanthes lobata on paracetamol-induced liver toxicity in rats
      A. RAJASEKARAN*, M. PERIYASAMY (Department of Pharmaceutical Chemistry, KMCH College of Pharmacy, Coimbatore, Tamilnadu, India; *rsekaran2001in@yahoo.co.in)

      Chinese Medicine 7, 12 (2012). TLC of a Soxhlet hydro-ethanolic extract of Trichosanthes lobata leaves (Cucurbitaceae) on silica gel with n-hexane – ethyl acetate 7:3. Derivatization with anisaldehyde – sulfuric acid reagent. The presence of flavonoids, saponins, and tannins was found.

      Classification: 8a, 8b, 14, 32e
      130 026
      New bakuchiol dimers from Psoraleae fructus and their inhibitory activities on nitric oxide production
      Qingxia XU, Qian LV, Lu LIU, Yingtao ZHANG*, Xiuwei YANG**
      (State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing, China; *ytao@bjmu.edu.cn; **xwyang@bjmu.edu.cn)

      Chinese Medicine 16, 98 (2021). Preparative TLC on silica gel for the isolation of bisbakuchiol N (a terpenophenolic) from a cyclohexane extract of Psoralea corylifolia (= Cullen corylifolia, Fabaceae) mature fruits, after fractionation on silica gel, cyclodextrane and reverse-phase columns. Mobile phase was petroleum ether – chloroform 10:1. Derivatization with sulfuric acid (10 % in ethanol – water, 19:1).

      Classification: 4d, 7, 15a, 32e
      130 013
      Characterization of natural herbal medicines by thin-layer chromatography combined with laser ablation-assisted direct analysis in real-time mass spectrometry
      Y. CHEN (Chen Yilin), L. LI (Li Linnan)*, R. XU (Xu Rui), F. LI (Li Fan), L. GU (Gu Lihua), H. LIU (Liu Huwei), Z. WANG (Wang Zhengtao), L. YANG (Yang Li)** (*Shanghai Key Laboratory of Compound Chinese Medicines, and Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; **Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China; *linnanli@shutcm.edu.cn, **yl7@shutcm.edu.cn)

      J Chromatogr A, 1625, 461230 (2020). Samples were extracts of Chinese plants: Acorus tatarinowii (= Acorus calamus var. angustatus) rhizomes (Araceae / Acoraceae) (1), Angelica sinensis roots (Apiaceae) (2), Gynura japonica rhizomes (Asteraceae) (3), Phellodendron chinense bark (Rutaceae) (4), Picrasma quassioides twigs and leaves (Simaroubaceae) (5), Rheum sp. roots and rhizomes (R. palmatum, R. tanguticum and/or R. officinale) (Polygonaceae) (6), Sophora flavescens roots (Fabaceae) (7), Dendrobium stems (D. aphyllum, D. aurantiacum var. dennaeanum, D. chrysanthum, D. chrysotoxum, D. gratiosissimum, D. hercoglossum, D. thyrsiflorum, D. trigonopus and D. williamsonii) (Orchidaceae) (8). Standards were: gigantol (from D. sonia); methoxycarbonyl-β-carboline (MCC from (5)); caffeic acid, emodin; senecionine and β-asarone; crategolic acid (= maslinic acid), corosolic acid, oleanic acid, ursolic acid; sesquiterpenoids (atractylenolides I – III) from Atractylodes macrocephala (Asteraceae); flavonoids (baicalein, baicalin, daidzin, hesperidin, wogonin) from Scutellaria baicalensis roots (Lamiaceae). HPTLC on silica gel with 10 mobile phases, depending on the samples. Detection under UV 254 nm and white light. For (3), derivatization with Dragendorff’s reagent (bismuth potassium iodide solution) for visualization of alkaloids. Zones of interest on underivatized plates were identified by a triple-quadrupole ­– linear ion-trap MS, the compounds being removed from the layer by a continuous-wave (445 nm) diode laser pointer through a DART interface (Direct Analysis in Real-Time, helium as gas for plasma-based ambient ionization, discharge needle voltage 1.5 kV, grid voltage 350 V, capillary temperature 300 °C and voltage 40 V, full scan in positive ionization mode in m/z range 150-800). Pigment standards were used for validation of this laser-assisted HPTLC-DART-MS method: malachite green, crystal violet, chrysoidin, auramine O, rhodamine B, Sudan red I – IV, Sudan red G, dimethyl yellow. Afterwards, the same HPTLC-MS method was applied to the origin / species determination of Dendrobium samples, based on the presence of four bibenzyl compounds erianin, gigantol, moscatilin, tristin. Erianin was present only in D. chrysotoxum, whereas none of these were detected in D. hercoglossum. Several components of the extracts were thus identified: asarone (a phenylpropanoid) in (1); phthalide lactones (butenylphthalide, ligustilide and chuanxiong lactone) in (2); co-eluting pyrrolizidine alkaloids (senecionine and seneciphylline) in (3); benzylisoquinoline alkaloid berberine in (4); alkaloids (canthinone alkaloids and MCC) in (5); anthraquinones (rhein, aloe-emodin, emodin, emodin methyl ether, chrysophanol) and (in negative mode) caffeic acid (a hydroxycinnamic acid) and corosolic, maslinic and oleanic acids (triterpenoids) in (6); quinolizidine alkaloids (matrine, oxymatrine, oxysophocarpine, sophoridine) in (7).

      Classification: 4e, 7, 8a, 8b, 15a, 22, 32e
      130 027
      Thin-layer chromatographic quantification of magnolol and honokiol in dietary supplements and selected biological properties of these preparations
      E. LATA, A. FULCZYK, P.G; OTT, T. KOWALSKA, M. SAJEWICZ, Ágnes M. MÓRICZ* (*Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; moricz.agnes@agrar.mta.hu)

      J Chromatogr A, 1625, 461230 (2020). Samples were methanolic extracts of commercial supplements containing Magnolia sp. bark (Magnoliaceae), as well as honokiol (1) and magnolol (2) (biphenyl neolignans) as separated or mixed standards. TLC and HPTLC on silica gel with n-hexane – ethyl acetate – ethanol 16:3:1. Visualization under UV 254 nm. Quantification of (1) and (2) by densitometric scanning in absorbance mode at 290 nm (hRF were 34 and 39, LOQ 200 ng and 280 ng/spot, respectively). Variability between samples from the same brand supplement was also determined, as well as extraction yields. Effect-directed analysis with 3 assays: A) to detect radical scavengers, immersion into DPPH• 0.02 % solution; B) to detect activity against Gram-negative bacteria, immersion into Aliivibrio fischeri suspension, followed by recording the bioluminescence; C) to detect activity against Gram-positive bacteria, immersion into Bacillus subtilis, followed by incubation 2 h at 28 °C and immersion into MTT 1 g/L. Compounds (1) and (2) were active in all assays. Identification of zones of interest by eluting with methanol from untreated TLC layer through the oval elution head of a TLC-MS interface directly to a single Quadrupole MS (electrospray ionization, interface temperature 350°C, heat block temperature 400°C, desolvation line temperature 250°C, detector voltage 4.5kV). Full mass scan spectra were recorded in the positive and negative ionization modes in m/z range 150–800. Other molecules (from other ingredients) were identified: piperine (alkaloid) and/or its geometrical isomers (active on A, hRF 29-30); and daidzein (active on A and B, hRF 18), isoflavone from Pueraria montana root (Fabaceae). Stability was assessed through 2D-HPTLC, by repeating the same development method in the orthogonal direction 4 h or 20 h after the first separation. Degradation products of (1) and (2) appeared after 20 h (but not at 4 h), including a honokiol dimer (formed in tracks of (1) and of (2)).

      Classification: 4e, 7, 8a, 22, 32e
      130 144
      Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection
      A. AMIRVARESI, M. RASHIDI, M. KAMYAR, M. AMIRAHMADI, B. DARAEI, H. PARASTAR* (*Department of Chemistry, Sharif University of Technology, Tehran, Iran; h.parastar@sharif.edu)

      J Chromatogr A, 1628, 461461 (2020). Samples were hydro-methanolic extracts of 100 genuine saffron samples (Crocus sativus stigmata, Iridaceae) from South Khorasan (SK) and Razavi Khorasan (RK) provinces (Iran), pure or mixed in several proportions with common vegetal adulterants: C. sativus style, Calendula officinalis petals (Asteraceae, Asteroideae), Carthamus tinctorius petals (Asteraceae, Carduoideae), Rubia tinctorum rhizomes (Rubiaceae). Commercial saffron samples (containing artificial adulterants) were also tested. TLC on silica gel with ethyl acetate – methanol – water – acetic acid 66:23:11:1. Evaluation at 254 nm, 366 nm, and 440 nm. Crocin (carotenoid, hRF 38) was used for optimization of extraction (parameters being first calculated by chemometry), using multilinear regression and ANOVA. Image data (pixel intensities and colors of each sample under the three selected wavelengths) were unfolded into a data matrix and transformed into a vector, used for multivariate image analysis of the chromatogram fingerprints. This allowed: A) separation of genuine samples by principal component analysis (PCA) into 2 clusters according to origin (cold climate in Northern half of RK vs. warm climate in SK and Southern part of RK) with 92 % prediction accuracy; B) separation of samples according to purity / vegetal adulterant groups by partial least squares – discriminant analysis (PLS-DA) with 98 % accuracy (if 10 µL extract applied); C) separation with 100 % prediction accuracy by PCA between genuine, mixed, and commercial samples.

      Classification: 4c, 4e, 8b, 14, 32e
      130 142
      Bioassay-guided identification of α-amylase inhibitors in herbal extracts
      Snezana AGATONOVIC-KUSTRIN*, E. KUSTRIN, V. GEGECHKORI, D. W. MORTON (*Department of Pharmaceutical and Toxicological Chemistry, Institute of Pharmacy, Sechenov University, Moscow, Russia, and School of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, Australia; s.kustrin@latrobe.edu.au)

      J Chromatogr A, 1620, 460970 (2020). Samples were ethyl acetate extracts of Lavandula angustifolia herb and flowers and of aerial parts of other Lamiaceae (Ocimum basilicum, Origanum vulgare, Thymus vulgaris, Rosmarinus officinalis, Salvia officinalis), as well as standards. HPTLC on silica gel (pre-washed with methanol and heated 30 min at 105 °C) with n-hexane – ethyl acetate – acetic acid 70:27:3. Documentation at UV 254 nm and 365 nm and white light before and after A) derivatization with anisaldehyde – sulfuric acid reagent, followed by 10 min heating at 110 °C; B) spraying with DPPH• (0.2 % in methanol), followed by 30 min incubation in the dark; C) α-amylase inhibition assay by immersion into enzyme solution, incubation 30 min at 37 °C, immersion into substrate solution (starch 1 % in water), incubation 20 min at 37 °C and immersion into Gram’s iodine solution for detection (inhibition zones appear blue on white background). Quantification was performed on pictures using image processing software, and expressed as equivalents to the respective standards used for calibration curves: A) β-sitosterol (LOQ 1.5 µg/band), B) gallic acid (LOQ 60 ng/band), C) acarbose (LOQ 8 µg/band). An amylase inhibiting zone (hRF 68) present in all samples (except L. angustifolia), scraped from untreated plates and washed with ethyl acetate, was tentatively identified by ATR-FTIR analysis as oleanolic acid (pentacyclic triterpene).

      Classification: 4e, 15a, 32e
      130 006
      Thin-layer chromatography with eutectic mobile phases – preliminary results
      Danuta RAJ* (*Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Wroclaw, Poland; danuta.raj@umed.wroc.pl)

      J Chromatogr A, 1621, 461044 (2020). Samples were five isoquinoline alkaloids (berberine, chelerythrine, chelidonine, coptisine, sanguinarine) either as standard mixture or present in a Chelidonium majus (Papaveraceae) herb extract obtained with HCl 0.05 M in methanol. Separation on TLC and HPTLC silica gel layers with a screening of mobile phases consisting of eutectic mixtures of chemicals and/or phytochemicals. These homogenous stable liquids called DES (deep eutectic solvents) were obtained either simply by mixing, or by mixing followed by heating at 50°C, or by mixing with water for dissolution followed by dehydratation through rotary evaporation. For polarity adjustment, the DES phases were tested pure or diluted with acetone, chloroform, diethyl ether, methanol, or water. Visualization under UV 366 nm. The best separation was obtained with menthol – phenol in equimolar mixture, with 35 % methanol added (hRF values of the selected alkaloids were 33, 39, 79, 20 and 52, respectively).

      Classification: 22, 32e
      130 119
      Development of an identification method for fern extracts using high‑performance thin‑layer chromatography (HPTLC)
      Melania ENOT*, R. SABESAJE, G. PRESORES, G. BARBOSA, A. ANG, R. BAUTISTA, R. DE LA CRUZ (*Tuklas Lunas Development Center, Central Mindanao University, University Town, Musuan, 8714 Bukidnon, Philippines, melaniaenot@cmu.edu.ph)

      J. Planar Chromatogr. 35, 491-500 (2022). HPTLC of gallic acid in fern species Drynaria
      quercifolia, Diplazium esculentum, and Asplenium nidus
       on silica gel with ethyl acetate - formic acid - acetic acid - water 120:11:11:26. Detection by heating at 100 °C for 3 min, followed by dipping into NP reagent (1.0 g of 2-aminoethyl diphenyl borate in 200 mL of ethyl acetate and stored at 4 °C).
      Quantitative determination by absorbance measurement at 366 nm. The hRF value for gallic acid was 82. Interday and intra-day precisions were below 1 % (n=3). 

       

      Classification: 7