Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

Page
      131 007
      Principal component analysis and DoE-Based AQbD Approach to Multipurpose HPTLC method for synchronous estimation of multiple FDCs of metformin HCl, repaglinide, glibenclamide and pioglitazone HCl
      P. PRAJAPATI*, K. RADADIYA, S. SHAH (*Department of Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Gujarat, India; pintu.prajapati@utu.ac.in)

      J Chrom Sci, bmad055 (2022). Standards of antiglycemic drugs were metformin hydrochloride (S1, a biguanide), glibenclamide (S2 = glyburide, a sulfonylurea), pioglitazone hydrochloride (S3, a thiazolidinedione), repaglinide (S4, a glinide). Samples were methanolic solutions of commercial tablets of S1 with each of the other molecules. The following method was developed by a software-assisted AQbD approach (analytical quality by design): (1) Several TLC separations were tried with toluene together with other solvents and with acidic or basic modifiers, with also variations of 24 method or instrumental parameters. (2) Principal component analysis (PCA) was performed in order to identify two principal components (PCs) responsible for 98 % of the observed variations: namely, resolution and tailing factor. Three critical method parameters (CMPs) had a statistically significant impact on the PCs: mobile phase (MP) composition, ammonium acetate concentration in MP, and saturation time. (3) To optimize these CMPs, the Box–Behnken design was implemented in 15 software-proposed experiments; the impacts of the 3 CMPs on the 2 PCs were evaluated by ANOVA, multiple regression analysis, and 2D and 3D contour plots. (4) The optimal CMPs ranges were determined by defining a MODR (method operable design region) on the superposed contour plots, and one TLC condition was selected as analytical control point.
      TLC on silica gel pre-washed with 10 mL methanol, dried and activated 10 min at 100° C. Separation with toluene – ethyl acetate – methanolic solution of 4 % ammonium acetate 7:7:6 after 15 min pre-saturation with 35 % relative humidity. Absorption emasurement at UV 254 nm. The hRF values were 13 for S1, 72 for S2, 82 for S3, 38 for S4. LOQ were 263, 387, 73 and 35 ng/zone, respectively. Linearity range was 25–75 µg/zone for S1, 100–300 ng/zone for S2 and S4, 750–2250 ng/zone for S3. Intermediate precision was below 2 %. For accuracy tests, recovery rates were between 97.6–101.4 %.

      Classification: 2e, 5c, 7, 8b, 17a, 17c, 23d, 23e, 24, 32a
      131 006
      Application of Taguchi OA and Box–Behnken design for the implementation of DoE-based AQbD approach to HPTLC method for simultaneous estimation of azilsartan and cilnidipine
      P. PRAJAPATI*, P. TAILOR, A. SHAHI, A. ACHARYA, S. SHAH
      (*Department of Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Mahuva, Surat, Gujarat, India; pintu21083@gmail.com)

      J Chrom Sci, bmad045 (2022). Standards were azilsartan medoxomil (AZL) and cilnidipine (CLN). Samples were acetonitrile solutions of commercial tablets of AZL and CLN, and purified human blood plasma as biological fluid spiked with AZL and CLN. The following method was developed by a software-assisted AQbD approach (analytical quality by design): (1) Taguchi orthogonal array design was implemented in 8 screening experiments in order to identify the 3 critical method variables (CMVs), which were: volume ratio of toluene – ethyl acetate, volume of methanol and saturation time. These CMVs had statistically significant impact (one-way ANOVA and Pareto charts) on the 3 critical analytical attributes (CAAs, they were: resolution between AZL and CLN and their hRF values). (2) To optimize these CMVs, the Box–Behnken design was implemented in 15 software-proposed experiments; the impacts of the 3 CMVs on the 3 CAAs were evaluated by ANOVA, multiple regression analysis, and 2D and 3D contour plots; the response surface analysis allowed the software to find a mathematical (quadratic or linear) equation for each CAA, based on the CMVs values. (3) The optimal CMVs ranges were determined by defining an analytical design space (ADS) on the superposed contour plots, and one TLC condition was selected as analytical control point.
      TLC on silica gel pre-washed with 10 mL methanol, dried and activated 15 min at 110° C. Separation with toluene – ethyl acetate – methanol 13:3:4 after 15 min pre-saturation with 35 % relative humidity. Absorption measurement at UV 254 nm. The hRF values were 49–51 for AZL and 70–71 for LRT. Linearity range was 400–2000 ng/zone for AZL and 100–500 ng/zone for CLN. Intermediate precision was below 1.6 % (n=3). LOQ were 121 ng/zone for AZL and 34 ng/zone for CLN. Recovery rates were 99.3–99.7 % for AZL and 98.1–99.5 % for CLN. Recovery rates from spiked plasma were 83.3 % for both molecules.

      Classification: 2e, 7, 8b, 16, 23d, 23e, 32a
      131 004
      Simultaneous determination of montelukast sodium and loratadine by eco-friendly densitometry and spectrophotometric methods
      Shimaa A. MAHMOUD*, A.M. EL-KOSASY, F.A. FOUAD
      (*Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; shimaa.ahmed22@azhar.edu.eg)

      J Chrom Sci, bmad025 (2023). Standards (separated and mixed) were montelukast sodium (MKT) and loratadine (LRT). Samples were methanolic solutions of commercial tablets, and purified blood plasma as biological fluid, from patients taking MKT or LRT as oral treatment. TLC on silica gel with ethyl acetate – ethanol 9:1. Visualization under UV 254nm. The hRF values were 80 for MKT and 71 for LRT. Densitometric absorbance measurement at 260 nm (20 mm/s scanning speed). System suitability was verified by resolution, selectivity, capacity and absence of tailing. The method was validated for linearity range (0.3–3.6 μg/zone for MKT, 0.2–4 µg/zone for LRT), for precision, for reproducibility, for robustness, and for accuracy expressed as average recovery values (100 % overall mean) at different concentrations. The TLC-densitometric method was also found statistically equivalent (Student’s t-test and F-test) to a previously described method (HPLC – spectrophotometry), but was better in terms of environmental and health impacts, using green analytical procedure index (GAPI) and analytical eco-scale (scores based on solvents/reagents, energy consumption, occupational hazard and waste generation). The TLC method was also compared to three (equally “green”) different analytical methods of spectrophotometry (without chromatography): response correlation, absorptivity-centering and LRT-MKT ratio derivatives. The TLC method was more sensitive (LOQ values were 82 ng/zone for MKT, 20 ng/zone for LRT).

      Classification: 5c, 7, 17c, 23d, 23e, 24, 32a, 32c
      131 005
      Green TLC-densitometric method for simultaneous determination of antazoline and tetryzoline: application to pharmaceutical formulation and rabbit aqueous humor
      O.G. HUSSEIN, Yasmin ROSTOM*, M. ABDELKAWY, M.R. REZK, D.A. AHMED
      (*Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; yasmin.rostom@pharma.cu.edu.eg)

      J Chrom Sci, bmad042 (2023). Standards (separated and mixed) were antazoline (ANT) and tetryzoline (TET) hydrochlorides. Samples were one commercial ophthalmic solution containing both molecules (unspiked and spiked), and aqueous humour of untreated rabbits as biological fluid, spiked with various concentrations of ANT and TET. TLC on silica gel with ethyl acetate – ethanol 1:1. Visualization under UV 254 nm. Densitometric absorbance measurement at 220 nm (20mm/s scanning speed). The hRF was 47 for TET and 71 for ANT. System suitability was verified by resolution, selectivity, capacity and absence of tailing. The method was validated for linearity range (0.2 – 18 µg/band), for precision, for reproducibility, for robustness, and for accuracy expressed as average recovery values (100 % overall mean) at different concentrations. The method was also found statistically equivalent (Student’s t-test and F-test) to the official corresponding titrimetric methods of the European Pharmacopoeia. Finally, environmental and health impacts of the methods were qualitatively and quantitatively assessed better as the other described methods, using analytical greenness (AGREE), green analytical procedure index (GAPI), national environmental method index (NEMI), and analytical eco-scale (scores based on solvents/reagents, energy consumption, occupational hazard and waste generation).

      Classification: 7, 17a, 23e, 32a, 32f
      131 067
      Simultaneous high‑performance thin‑layer chromatography analysis of phytoconstituents and antioxidant potential of Inula grandiflora Willd. from India
      S. PRADHAN*, V. SHARMA (*Department of Botany, Eternal University, Baru Sahib, Himachal Pradesh, India, pradhan_sarojkumar@yahoo.com)

      J. Planar Chromatogr. 35, 609-616 (2022). HPTLC of chlorogenic acid (1), caffeic acid (2), β-sitosterol (3) and lupeol (4) in the flowers and roots of Inula grandiflora on silica gel with toluene - ethyl - acetate - formic acid - methanol 30:30:8:3 for (1) and (2), and toluene - ethyl acetate - glacial acetic acid 145:45:1 for (3) and (4). Detection by spraying with Natural product reagent for (1) and (2) and  p- anisaldehyde - sulfuric acid reagent for (3) and (4). Quantitative determination by absorbance measurement at 366 nm for (1) and (2) and 525 nm for (3) and (4). The hRF values for (1) to (4) were 18, 82, 71 and 88, respectively. Linearity was between 125 and 625 ng/zone for (1) to (4). Intermediate precisions were below 2 % (n=9). LOD and LOQ were 32 and 97 ng/zone for (1), 39 and 110 ng/zone for (2), 47 and 124 ng/zone for (3) and 29 and 89 ng/zone for (4), respectively. Average recovery was 98.9 % for (1), 96.7 % for (2), 97.8 % for (3) and 98.8 % for (4).

      Classification: 7, 14
      131 069
      Development and validation of a novel high‑performance thin‑layer chromatography method for the quantitative estimation of neohesperidin from Citrus aurantium peel extract
      P. TATKARE, A. JADHAV* (*Bharati Vidyapeeth’s College of Pharmacy, Sector 8, C.B.D. Belapur, Navi Mumbai, Maharashtra 400 614, India, aruna.jadhav@bvcop.in)

      J. Planar Chromatogr. 35, 579-584 (2022). HPTLC of neohesperidin from Citrus aurantium peel extract on silica gel with ethyl acetate - methanol - water - formic acid 71:14:10:5. Quantitative determination by absorbance measurement at 254 nm. The hRF value for neohesperidin was 54. Linearity was between 1000 and 3000 ng/zone. Intermediate precisions were below 2 % (n=9). Recovery was between 99.6 and 101.8 %. 

      Classification: 8a
      131 070
      Rapid separation of lactucin and lactucopicrin from Cichorium glandulosum by medium‑pressure preparative liquid chromatography and quantitative analyses by high‑performance thin‑layer chromatography
      Y. ZHONG (Zhong Yewei), H. TAN (Tan Huiwen), R. ZHANG (Zhang Rui), A. ABUDUREXITI, J. YAN (Yan Junlin), X. MA (Ma Xiaoli)* (*College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China, mxl108@sohu.com)

      J. Planar Chromatogr. 35, 593-602 (2022). HPTLC of lactucin (1) and lactucopicrin (2) in the whole herb of Cichorium glandulosum on silica gel with ether - ethyl acetate 1:5. Quantitative determination by absorbance measurement at 256 nm. The hRF values for (1) and (2) were 42 and 65, respectively. Linearity was between 498 and 2988 ng/zone for (1) and 499 and 2994 ng/zone for (2). Intermediate precisions were below 5 % (n=6). Average recovery was 100.0 % for (1) and 99.5 % for (2). 

      Classification: 8b
      131 071
      Development and validation of a high‑performance thin‑layer chromatography method for the estimation of bromfenac in ophthalmic solution
      M. THOMAS, V. JAIN*, B. SONAWANE, E. SOUZA, M. KUMAR, R. SINGH (*Department of Quality Assurance, Oriental College of Pharmacy, Sanpada, Navi Mumbai 400705, India, vandana.jain@ocp.edu.in)

      J. Planar Chromatogr. 35, 627-633 (2022). HPTLC of bromfenac in ophthalmic solution on silica gel with toluene - ethyl acetate - glacial acetic acid 375:175:1. Quantitative determination by absorbance measurement at 274 nm. The hRF values for bromfenac was 28. Linearity was between 60 and 270 ng/zone. Intermediate precisions were below 2 % (n=3). The LOD and LOQ were 7 and 22 ng/zone, respectively. Average recovery was 100.7 %.

      Classification: 32a
Page