Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

Page
      129 067
      Guided isolation of new iridoid glucosides from Anarrhinum pubescens by high-performance thin-layer chromatography – acetylcholinesterase assay
      E. MAHRAN, Gertrud E. MORLOCK*, M. KEUSGEN (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1609, 460438 (2020). HPTLC of defatted hydro-methanolic extract of Anarrhinum pubescens (= A. duriminium) aerial parts (Plantaginaceae) on silica gel with chloroform – methanol 9:2. When intended for MS experiments, layers were previously washed twice with methanol – water 4:1 and heated 20 min at 110 °C. Derivatization by automatic piezoelectric spraying of anisaldehyde sulfuric acid reagent, followed by heating 4 min at 105 °C. Effect-directed analysis for acetyl-cholinesterase (AChE) inhibitors was performed by successive piezoelectric sprayings with TRIS buffer, with AChE solution and (after 30 min incubation at 37 °C) with naphthyl acetate and Fast Blue salt B solution. White inhibiting zones on purple background were documented under white light, and densitometry was measured by scanning in fluorescence mode at 500 nm. One of the active bands was eluted from untreated layer with methanol through the oval elution head of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer using heated electrospray ionization (HESI); a full scan mass spectrum (m/z 50−750) in the positive ionization mode was recorded, as well as HRMS/MS data across a range of collision energies (10–50 V). The compound was identified as foliamenthoyl-cinnamoyl-antirrhinoside. It was applied with two other active antirrhinosides (iridoids), all isolated from the extract through column chromatography, on an HPTLC layer without migration and submitted to AChE assay; their activity was expressed as equivalency towards rivastigmine tartrate as positive control. 

      Classification: 4e, 7, 8b, 14, 32e
      129 065
      Effect-directed analysis of bioactive compounds in Cannabis sativa L. by high-performance thin-layer chromatography
      G. CORNI, V. BRIGHENTI, F. PELLATI, Gertrud E. MORLOCK*
      (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1629, 461511 (2020). HPTLC of methanolic extracts of female inflorescences from ten hemp varieties (Cannabis sativa, Cannabaceae) on silica gel with toluene – ethyl acetate 1:1 or (for yeast assays) on RP-18W with toluene – ethyl acetate 7:3. When intended for MS experiments, layers were previously washed twice with methanol – formic acid 10:1, once with acetonitrile – methanol 2:1 and air-dried. Chromatograms were documented under white light, UV 254 nm and for fluorescence detection (FLD) at 366 nm. Afterwards, 6 derivatization assays were performed with the following reagents, either without heating: primuline; or requiring heating 5 min at 120 °C: p-aminobenzoic acid; anisaldehyde sulfuric acid; diphenylamine aniline phosphoric acid; ninhydrin; vanillin sulfuric acid. Besides, 8 effect-directed assays (EDA) were performed for free radical (DPPH•) scavengers, for antimicrobial compounds (Gram-positive Bacillus subtilis assay, Gram-negative Aliivibrio fischeri bioluminescence assay), for phytoestrogens (planar yeast estrogen assay), for inhibitors of the following enzymes: acetyl-cholinesterase (AChE), α- and β-glucosidase, tyrosinase. AChE assay was performed by immersion (speed 3.5 cm/s, time 5 s) into AChE solution (666 units in TRIS buffer 0.05 M, with bovine serum albumin 0.1 %, pH 7.8), incubation 25 min at 37 °C, spraying with substrate solution, and heating 2 min at 50 °C. Two AChE substrate solutions were used: A) α-naphthyl acetate 0.1 % and chromogenic reagent Fast Blue salt B 0.18 % in ethanol – water 1:2, giving white inhibition bands visible on purple background under white light; B) with 3-indoxyl-3-acetate, giving black inhibition bands on blue background under UV 254 nm, which was useful to prevent false negatives when Fast Blue Salt B formed colored bands with analytes. Two bands of multipotent compounds were eluted from normal-phase layer with methanol through the oval elution head of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 50−750) in the positive and negative ionization modes were recorded using heated electrospray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C). By comparison to literature and standards, they were identified as cannabidivarinic acid (hRF 55) and cannabidiolic acid (hRF 60-70).

      Classification: 4e, 7, 15a, 32e
      129 059
      Same analytical method for both (bio)assay and zone isolation to identify/quantify bioactive compounds by quantitative nuclear magnetic resonance spectroscopy
      E. AZADNIYA, L. GOLDONI, T. BANDIERA, Gertrud E. MORLOCK* (*Institute of Nutritional Science, Justus Liebig University Giessen, and TransMIT Center of Effect-Directed Analysis, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1616, 461434 (2020). Samples were acetonic extracts of Malus domestica fruit peels (Rosaceae) and of Salvia officinalis, Thymus vulgaris and Origanum vulgare spice powders (Lamiaceae), as well as standards of maleic acid (dicarboxylic acid), carvacrol, thymol (phenolic monoterpenes), rosmanol (phenolic diterpene), betulinic acid, corosolic acid (CA), maslinic acid (MA), oleanolic acid (OA) and its isomer ursolic acid (UA) (triterpenes). HPTLC on silica gel, when intended for MS and NMR experiments, layers were prewashed twice with methanol – water 3:1, followed by 30 min drying at 120 °C. When intended for quantitative densitometry, start zones were submitted to prechromatographic derivatization with iodine solution (10 g/L in chloroform) allowed to migrate up to 12 mm, incubated 10 min at 27 °C and dried under cold air stream; this allowed separation of isomeric triterpenes. Separation with toluene – methanol – ethyl acetate 17:2:1 after 5 min chamber saturation at 50 % relative humidity. CA coeluted with MA, and OA with UA. Four hyphenations: A) Quantitative HPTLC densitometry for active analytes was performed by measuring absorption at 665 nm with a tungsten lamp after immersion of the chromatograms in anisaldehyde sulfuric acid reagent and heating 5 min at 110 °C. Linear range was obtained at 25 - 200 ng/band for OA and 100 - 400 ng/band for UA. B) Effect-directed analysis by immersing the chromatograms into Gram-positive Bacillus subtilis suspension for antibacterial activity and into acetyl-cholinesterase and tyrosinase solutions for enzymatic inhibition. C) Active bands were eluted with methanol through the oval elution head and in-line filter frit of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 100−1000) in the positive and negative ionization modes were recorded using heated electrospray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C, probe heater temperature 200 °C). D) With higher amounts applied, preparative HPTLC, by scraping the multipotent band corresponding to OA and UA, and dissolving these analytes in methanol, for NMR analyses (1H raw or deconvoluted, and 2D 1H–13C Heteronuclear Single Quantum Coherence). Both isomers were distinguished by their allylic H-18 protons and separately quantified by applying PULCON method (PUlse Length-based CONcentration). LOQ was 267 μM for OA and 173 μM for UA; optimal range was 300 – 4600 mM, corresponding to 126 - 2090 μg of triterpenes.

      Classification: 4e, 7, 11a, 15a, 32e
      129 064
      Effect-directed profiling and identification of bioactive metabolites from field, in vitro-grown and acclimatized Musa spp. accessions using high-performance thin-layer chromatography-mass spectrometry
      I.O. AYOOLA-ORESANYA, M.A. SONIBAREA, B. GUEYEB, R. PALIWALB, M.T. ABBERTON, Gertrud E. MORLOCK* (*Institute of Nutritional Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1616, 460774 (2020). Methanolic extracts of leaves of Musa acuminata, M. balbisiana and M. sapientum (Musaceae), either from fields or from in vitro cultures or from the plantlets derived from in vitro culture and acclimatized in isolated warm room, were separated on HPTLC silica gel layers with toluene – ethyl acetate – methanol 6:3:1 or ethyl acetate – toluene – formic acid – water 34:5:7:5. When intended for MS experiments, layers were previously washed twice with methanol – formic acid 10:1, once with acetonitrile – methanol 2:1 and air-dried. Evaluation under white light, UV 254 nm and 366 nm. Derivatization by immersion (2s, 2cm/s) into natural product reagent preceded by heating at 110 °C for 5 min, or into anisaldehyde sulfuric acid reagent, diphenylamine aniline reagent, ninhydrin reagent, followed by the same heating procedure. Besides, plates were neutralized by cold air stream followed with phosphate buffer (8 %, pH 7.5) piezoelectrically sprayed on the plates and automated plate drying. Thereafter, 9 effect-directed assays (EDA) were performed for free radical (DPPH•) scavengers, for enzymatic inhibitors (α-amylase, acetyl- and butyryl-cholinesterase, α- and β-glucosidase), for antimicrobial compounds (Gram-positive Bacillus subtilis assay, Gram-negative Aliivibrio fischeri bioluminescence assay), and for mutagenic compounds (SOS response – UMU-C test using Salmonella typhimurium suspension and 4-nitroquinoline 1-oxide as positive control). The bands of 4 active compounds were eluted with methanol through a TLC-MS interface pump into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 50−800) in the positive and negative ionization modes were recorded using electrospray ionization (ESI, spray voltage 3.3kV, capillary temperature 320°C, collision energy 35 eV). By comparison to a standard, one band present in all samples was identified as linolenic acid. For the other bands, only present in in vitro grown accessions, only raw molecular formulas and phytochemical classes were assigned (a pyrrolidine alkaloid, an amino-acid, a phenolic derivative).

      Classification: 4e, 7, 11a, 18a, 22, 32e
      129 058
      Effect-directed profiling of Ficus religiosa leaf extracts for multipotent compounds via 12 effect-directed assays
      V. GAWANDE, Gertrud E. MORLOCK* (*Institute of Nutritional Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1637, 461836 (2021). Successive ultrasonic macerates of Ficus religiosa leaves (Moraceae) were separated with toluene – ethyl acetate – methanol 6:3:1 on HPTLC silica gel or (for yeast and genotoxicity assays) on RP18W phase. For MS experiments, layers were previously washed twice with methanol – formic acid 10:1, once with acetonitrile – methanol 2:1 and air-dried. Chromatograms were documented under white light, UV 254 nm and 366 nm. Afterwards, 11 derivatization assays were performed with the following reagents, either without heating: Dragendorff’s reagent; Fast Blue B salt; ferric chloride; natural product reagent - PEG 400; primuline; or requiring heating for 5 min at 120 °C: anisaldehyde sulfuric acid; diphenylamine aniline phosphoric acid; 2-naphthol sulfuric acid; ninhydrin; Tillmans' reagent; vanillin sulfuric acid. Besides, 12 effect-directed assays (EDA) were performed for free radical (DPPH• and ABTS•) scavengers, for enzyme inhibitors (α-amylase, acetyl- and butyryl-cholinesterase, α- and β-glucosidase, tyrosinase), for antimicrobial compounds (Gram-positive Bacillus subtilis assay, Gram-negative Aliivibrio fischeri bioluminescence assay), for phytoestrogens (planar yeast estrogen assay) and genotoxicity (SOS response – UMU-C test by successive immersions into citric buffer, into Salmonella typhimurium suspension and into methylumbelliferyl-galactopyranoside solution, followed by FLD at 366nm of mutagenic compounds as blue fluorescent zones, using 4-nitroquinoline 1-oxide as positive control). No activity was found for the last two assays. Ethyl acetate extracts of all samples were the most active. After EDA, most active bands were scanned for semi-quantitative equivalence densitometry at 546 nm using mercury lamp, compared to the following standards: acarbose, gallic acid, imidazole, kojic acid, physostigmine, tetracycline, depending on the assay. The bands of 3 multipotent compounds were eluted with methanol through the oval elution head and in-line filter frit of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 50−750) in the positive and negative ionization mode were recorded using heated electrospray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C, probe heater temperature 200 °C). MS-MS spectra were recorded in the negative mode using HCD-NCE (higher-energy collisional dissociation –normalized collision energy, with stepped negative collision energies from 10 to 40 eV). The three active zones were assigned to palmitic acid, to linolenic acid and to its di-oxygenated derivative.

      Classification: 4e, 11a, 32e
      129 057
      Non-target bioanalytical eight-dimensional hyphenation including bioassay, heart-cut trapping, online desalting, orthogonal separations and mass spectrometry
      T. SCHREINER, Gertrud E. MORLOCK* (*Institute of Nutritional Science, and Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany; gertrud.morlock@uni-giessen.de)

      J Chromatogr A, 1647, 462154 (2021). Hydromethanolic extracts of Cinnamomum verum and C. cassia (Lauraceae) were separated on MS-grade HPTLC silica gel (prewashed twice with methanol – water 4:1 and dried at 110 °C for 20 min) with toluene – ethyl acetate – methanol 6:3:1. Residual organic solvent was removed by drying under automated cold stream air for 20 min. Chromatograms were documented under white light, UV 254 nm and for fluorescence detection at 366 nm, and afterwards submitted to Aliivibrio fischeri bioassay: 2 mL of bacterial suspension were piezoelectrically sprayed on the plate and bioluminescence was measured every 3 min for 30 min (120 s exposure time). For the first time, analytes from a bioactive zone, isolated by the oval elution head of a TLC-MS interface pump, were trapped from the highly salted layer by a heart-cut elution (45 s, flow rate 0.1 mL/min) through a biocompatible in-line filter to different on-line desalting devices. Using a two-position switching valve, the desalted analytes were guided to a reverse-phase UPLC column and separated at 40 °C using a fast gradient (ca. 13 min, 0.6 mL/min) with methanol (from 2 - 90 %) and an ammonium acetate solution (2.5 mM, pH 4.5 adjusted with acetic acid). After HPLC separation, analytes were detected by photodiode array (PDA) and then ESI-MS in polarity switching mode (cone voltage of 10 V, ESI probe at 600 °C, ESI source at 120 °C). Identified active compounds were cinnamic acid, coumarin, as well as the in HPTLC coeluting cinnamaldehyde and 2-methoxycinnamaldehyde. Separately, proof-of-concept tests were also made for more polar phenolic acids (gallic, chlorogenic, caffeic, cinnamic, ferulic and coumaric acids) but without HPTLC separation.

      Classification: 4d, 4e, 7, 8b, 32e
      129 018
      Cytotoxicity and chromatographic fingerprinting of Euphorbia species used in traditional medicine
      S. MAMPA, S. MASHELE, M. SEKHOACHA* (*Department of Pharmacology, University of the Free State, Republic of South Africa)

      Pak. J. Biol. Sci. 23, 995-1003 (2020). HPTLC of six Euphorbia species on silica gel with toluene - acetone 4:1, toluene - chloroform - acetone 8:5:7 and n-butanol - glacial acetic acid - water 5:1:4. Qualitative identification under UV light at 254 and 366 nm. 

      Classification: 32e
      129 056
      Bioactive clerodane diterpenes of giant goldenrod (Solidago gigantea Ait.) root extract
      Ágnes M. MÓRICZ*, D. KRÜZSELYI, P.G. OTT, Z. GARÁDI, S. BÉNI, G.E. MORLOCK, J. BAKONYI (*Plant Protection Institute, Centre for Agricultural Research, 1022 Budapest, Hungary; moricz.agnes@atk.hu)

      Journal Chromatogr A, 1641, 461727 (2021). HPTLc of an ethanolic maceration of Solidago gigantea roots (Asteraceae) on silica gel with n-hexane – isopropyl acetate – acetone 16:3:1, or n-hexane – isopropyl acetate – acetic acid 40:9:1. With the second mobile phase, acid residues had to be eliminated by 20 min automated drying or by 2 h incubation with potassium hydroxide in the opposite twin trough (followed by 15 min cold air streaming); this latter mobile phase allowed to obtain higher hRF values, but some butyrylcholinesterase (BChE) inhibiting activities were lost. The chromatograms were documented at UV 254 nm and 365 nm and white light before and after A) derivatization with vanillin – sulfuric acid reagent; B) enzymatic reaction by immersion into acetylcholinesterase, BChE, glucosidase and amylase solutions; C) Aliivibrio fischeri and Xanthomonas euvesicatoria bioassays, to detect activity against Gram-negative bacteria; D) Bacillus subtilis bioassay to detect activity against Gram-positive bacteria; E) a new antifungal assay with Fusarium avenaceum. For this assay, the chromatograms were immersed 6 s into the isolated mycelium suspension (diluted to OD600 0.4-0.8) and incubated in a vapor chamber at 21 °C for 48-72 h. Inhibition zones were indicated by the lack of visible white fungal hyphae. An aqueous solution of iodonitrotetrazolium (INT, 1 mg/ml) was sprayed on the plate to enhance the contrast (bright zones on a purple background). Benomyl (a benzimidazole fungicide) was used as positive control. Eight clerodane diterpenes (including kingidiol, hautriwaic lactone, and solidagoic acids A and B) were identified from six multipotent zones by bioassay-guided purification through preparative flash chromatography and HPLC, followed by HRMS and NMR, as well as by HPTLC hyphenated to quadrupole-orbitrap HRMS: A) by eluting with methanol (flow 100 µL/min) the compounds from the plate through the oval elution head of an interface of heated electro-spray ionization (spray voltage 3.5 kV, capillary temperature 270 °C, nitrogen as sheath and auxiliary gas, full scan in negative and positive ionization modes in m/z range 50-750); B) without eluent with a DART interface (Direct Analysis in Real-Time, needle voltage 4 kV, grid voltage 50 V, helium as gas, temperature 500 °C, full scan in positive ionization mode in m/z range 100-750).

      Classification: 4e, 8b, 9, 15a, 32e
Page