Cumulative CAMAG Bibliography Service CCBS

Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.

The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:

  • Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
  • Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
  • Keyword register: select an initial character and browse associated keywords
  • Search by CBS edition: Select a CBS edition and find all related publications

Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.

      133 001
      Quantitative analysis of three synthetic cannabinoids by densitometric high‑performance thin‑layer chromatography
      B. DUFFAU*, D. MORALES, L. QUIÑELEM (*Institute of Public Health, Santiago de Chile, Chile, bduffau@ispch.cl)

      J. Planar Chromatogr. 36, 433-438 (2023). HPTLC of synthetic cannabinoids AM2201 (1), CP-47,497 (2), and JWH-018 (3) in seized samples on silica gel with cyclohexane - diethylamine 9:1. Quantitative determination by absorbance measurement at 280 nm for (2) and 315 nm for (1) and (3). The hRF values for (1) to (3) were 26, 73 and 55, respectively. Linearity was between 2 and 14 µg/zone for (3), 5 and 35 µg/zone for (1) and 50 and 350 µg/zone for (2). The intermediate precision was 23.0 % for (1), 16.6 % for (2) and 7.5 % for (3). The LOD and LOQ were 5.6 and 16.9 µg/zone for (1), 0.7 and 2.2 µg/zone for (2) and 1.9 and 5.6 µg/zone for (3). Average recovery was 84.0 % for (1), 105.1 % for (2) and 107.1 % for (3).

      Classification: 23e
      132 053
      Diosmin: A Daboia russelii venom PLA2s inhibitor- purified, and characterized from Oxalis corniculata L. medicinal plant
      K. KIRAN, V. KAMESHWAR, K. NAGARAJU, N. PRASAD, K. VARADARAJU, K. AWATHADE, N. SWAMY, K. KUMAR* (*Neuroimmunology and Venom Pharmacology laboratory, Div of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, India, kumarjr2013@gmail.com)

      J. Ethnopharmacol. 318, 116977 (2024). HPTLC of Oxalis corniculata on silica gel with chloroform - methanol - water 15:3:2. Detection by spraying with 2 % aluminium chloride. Qualitative analysis under UV light at 344 nm. Further analysis by mass spectrometry.

      Classification: 23e
      132 014
      Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience
      H. ETESAMI, B. GLICK (*Soil Science Department, University of Tehran, Tehran, Iran, hassanetesami@ut.ac.ir)

      Microbiol. Res. 281, 127602 (2024). Review of potential applications of indole-3-acetic acid (IAA) in optimizing crop yields and fostering environmental resilience, including techniques for the bacterial IAA quantification. TLC and HPTLC methods were described, for the analysis of IAA in the range of 100 to 1000 ng/zone from microbial samples.

      Keywords: HPTLC review
      Classification: 23c
      132 060
      Disruption of the inositol phosphorylceramide synthase gene affects Trypanosoma cruzi differentiation and infection capacity
      N.S.A. DOS SANTOS, C.F. ESTEVEZ-CASTRO, J.P. MACEDO, D.F. CHAME, T. CASTRO-GOMES, M. SANTOS-CARDOSO, G.A. BURLE-CALDAS, C.N. COVINGTON, P.G. STEEL, T.K. SMITH, P.W. DENNY, Santuza M. R. TEIXEIRA* (*Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil; santuzat@ufmg.br)

      PLoS Neglected Tropical Diseases 17(09), e0011646 (2023). Samples were extracts rich in sphingolipids obtained from Trypanosoma cruzi epimastigotes, or from Leishmania major promastigotes (Trypanosomatidae), or from Chlorocebus sp. kidney Vero cells (Cercopithecidae), all cell lines incubated 2h before the extractions with ceramide N-hexanoyl-D-erythro-sphingosine coupled to fluorescent NBD-amine group (NBD = nitrobenzoxadiazolyle). Dried extracts were resuspended in chloroform – methanol (1:1) before application on TLC silica gel layers. Development with chloroform – methanol – potassium chloride 0.25 % aqueous solution 11:9:2. Visualization under automated laser scanner. Three sphingolipids were detected due to the NBD fluorescent group: sphingomyelin (hRF 42) was present in Vero cells only (negative control), whereas the targeted inositol-phosphorylceramide (IPC, hRF 70), was present in both L. major (positive control) and T. cruzi wild-type. It was absent in T. cruzi cell lines knock-out (KO) for the IPC-synthase (IPCS) gene, but present again in the add-back cell-lines (obtained with plasmide transfection of the IPCS gene into KO cells). An unknown lipid (hRF 78) was detected in all T. cruzi samples.

      Classification: 4e, 8b, 11c, 23e, 32d
      132 008
      In silico exploration of Serratia sp. BRL41 genome for detecting prodigiosin Biosynthetic Gene Cluster (BGC) and in vitro antimicrobial activity assessment of secreted prodigiosin
      Farhana BOBY*, N.H. BHUIYAN, B. KANTI SAHA, S. SANDHANI DEY, A. KUMAR SAHA, M. AL BASHERA, S. PROSAD MOULICK, F. JAHAN, A. UZ ZAMAN, S.F. CHOWDHURY, S.R. NASER, S. KHAN, M. HASAN SARKAR (*Bangladesh Council of Scientific and Industrial Research (BCSIR Laboratories), Dhaka, Bangladesh; farhana_boby@bcsir.gov.bd)

      PLoS ONE 18(11), e0294054 (2023). Sample was a pigment extracted with methanol from cell pellets of Serratia marcescens strain BRL41 (Yersiniaceae). TLC on silica gel with ethyl acetate. Detection under daylight. The pink pigment had the same hRF value (87) and colour as prodigiosin from standard strain ATCC-13880.

       

       

      Classification: 9, 23a
      132 058
      In vitro antiproliferative and apoptotic effects of thiosemicarbazones based on (–)-camphene and R-(+)-limonene in human melanoma cells
      P. R. OTAVIANO SOARES, D. C. SOUZA PASSOS, F. MOREIRA da SILVA, A.P. B. da SILVA-GIARDINI, N. PEREIRA COELHO, C.M. ALVES de OLIVEIRA, L. KATO, C.C. da SILVA, Lidia GUILLO* (*Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil; guillo@ufg.br)

      PLoS ONE 18(11), e0295012 (2023). TLC on silica gel to monitor the synthesis of 15 new camphene-based thiosemicarbazones produced by the reaction of camphene thiosemicarbazide either with benzaldehydes, or with acetophenones, or with one of the following molecules: benzophenone, cinnamic aldehyde, ethyl pyruvate, furaldehyde, menthone, pyrrole carboxaldehyde or thiophene-carboxaldehyde. Development with n-hexane – ethyl acetate 3:7 in the case of benzaldehydes, except vanillin; or 7:3 for the vanillin derivative and all others, followed by visualization of products with resublimated iodine. The aldehyde used for compound 15 is in fact vanillin.

      Classification: 4e, 7, 8b, 15a, 17c, 23e, 24
      131 007
      Principal component analysis and DoE-Based AQbD Approach to Multipurpose HPTLC method for synchronous estimation of multiple FDCs of metformin HCl, repaglinide, glibenclamide and pioglitazone HCl
      P. PRAJAPATI*, K. RADADIYA, S. SHAH (*Department of Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Gujarat, India; pintu.prajapati@utu.ac.in)

      J Chrom Sci, bmad055 (2022). Standards of antiglycemic drugs were metformin hydrochloride (S1, a biguanide), glibenclamide (S2 = glyburide, a sulfonylurea), pioglitazone hydrochloride (S3, a thiazolidinedione), repaglinide (S4, a glinide). Samples were methanolic solutions of commercial tablets of S1 with each of the other molecules. The following method was developed by a software-assisted AQbD approach (analytical quality by design): (1) Several TLC separations were tried with toluene together with other solvents and with acidic or basic modifiers, with also variations of 24 method or instrumental parameters. (2) Principal component analysis (PCA) was performed in order to identify two principal components (PCs) responsible for 98 % of the observed variations: namely, resolution and tailing factor. Three critical method parameters (CMPs) had a statistically significant impact on the PCs: mobile phase (MP) composition, ammonium acetate concentration in MP, and saturation time. (3) To optimize these CMPs, the Box–Behnken design was implemented in 15 software-proposed experiments; the impacts of the 3 CMPs on the 2 PCs were evaluated by ANOVA, multiple regression analysis, and 2D and 3D contour plots. (4) The optimal CMPs ranges were determined by defining a MODR (method operable design region) on the superposed contour plots, and one TLC condition was selected as analytical control point.
      TLC on silica gel pre-washed with 10 mL methanol, dried and activated 10 min at 100° C. Separation with toluene – ethyl acetate – methanolic solution of 4 % ammonium acetate 7:7:6 after 15 min pre-saturation with 35 % relative humidity. Absorption emasurement at UV 254 nm. The hRF values were 13 for S1, 72 for S2, 82 for S3, 38 for S4. LOQ were 263, 387, 73 and 35 ng/zone, respectively. Linearity range was 25–75 µg/zone for S1, 100–300 ng/zone for S2 and S4, 750–2250 ng/zone for S3. Intermediate precision was below 2 %. For accuracy tests, recovery rates were between 97.6–101.4 %.

      Classification: 2e, 5c, 7, 8b, 17a, 17c, 23d, 23e, 24, 32a
      131 007
      Principal component analysis and DoE-Based AQbD Approach to Multipurpose HPTLC method for synchronous estimation of multiple FDCs of metformin HCl, repaglinide, glibenclamide and pioglitazone HCl
      P. PRAJAPATI*, K. RADADIYA, S. SHAH (*Department of Quality Assurance, Maliba Pharmacy College, Uka Tarsadia University, Tarsadi, Gujarat, India; pintu.prajapati@utu.ac.in)

      J Chrom Sci, bmad055 (2022). Standards of antiglycemic drugs were metformin hydrochloride (S1, a biguanide), glibenclamide (S2 = glyburide, a sulfonylurea), pioglitazone hydrochloride (S3, a thiazolidinedione), repaglinide (S4, a glinide). Samples were methanolic solutions of commercial tablets of S1 with each of the other molecules. The following method was developed by a software-assisted AQbD approach (analytical quality by design): (1) Several TLC separations were tried with toluene together with other solvents and with acidic or basic modifiers, with also variations of 24 method or instrumental parameters. (2) Principal component analysis (PCA) was performed in order to identify two principal components (PCs) responsible for 98 % of the observed variations: namely, resolution and tailing factor. Three critical method parameters (CMPs) had a statistically significant impact on the PCs: mobile phase (MP) composition, ammonium acetate concentration in MP, and saturation time. (3) To optimize these CMPs, the Box–Behnken design was implemented in 15 software-proposed experiments; the impacts of the 3 CMPs on the 2 PCs were evaluated by ANOVA, multiple regression analysis, and 2D and 3D contour plots. (4) The optimal CMPs ranges were determined by defining a MODR (method operable design region) on the superposed contour plots, and one TLC condition was selected as analytical control point.
      TLC on silica gel pre-washed with 10 mL methanol, dried and activated 10 min at 100° C. Separation with toluene – ethyl acetate – methanolic solution of 4 % ammonium acetate 7:7:6 after 15 min pre-saturation with 35 % relative humidity. Absorption emasurement at UV 254 nm. The hRF values were 13 for S1, 72 for S2, 82 for S3, 38 for S4. LOQ were 263, 387, 73 and 35 ng/zone, respectively. Linearity range was 25–75 µg/zone for S1, 100–300 ng/zone for S2 and S4, 750–2250 ng/zone for S3. Intermediate precision was below 2 %. For accuracy tests, recovery rates were between 97.6–101.4 %.

      Classification: 2e, 5c, 7, 8b, 17a, 17c, 23d, 23e, 24, 32a