Cumulative CAMAG Bibliography Service CCBS
Our CCBS database includes more than 11,000 abstracts of publications. Perform your own detailed search of TLC/HPTLC literature and find relevant information.
The Cumulative CAMAG Bibliography Service CCBS contains all abstracts of CBS issues beginning with CBS 51. The database is updated after the publication of every other CBS edition. Currently the Cumulative CAMAG Bibliography Service includes more than 11'000 abstracts of publications between 1983 and today. With the online version you can perform your own detailed TLC/HPTLC literature search:
- Full text search: Enter a keyword, e.g. an author's name, a substance, a technique, a reagent or a term and see all related publications
- Browse and search by CBS classification: Select one of the 38 CBS classification categories where you want to search by a keyword
- Keyword register: select an initial character and browse associated keywords
- Search by CBS edition: Select a CBS edition and find all related publications
Registered users can create a tailor made PDF of selected articles throughout CCBS search – simply use the cart icon on the right hand of each abstract to create your individual selection of abstracts. You can export your saved items to PDF by clicking the download icon.
J Chromatogr A 1638, 461830 (2021). The purpose was to find the first universal HPTLC mixture (UHM), a mixture of reference compounds that could be used for the system suitability test (SST) for the full RF range in all HPTLC experiments.
(Part 1) UHM composition: First, 56 organic molecules, detectable without derivatization, were tested on HPTLC silica gel with 20 different mobile phases (MP) belonging to different Snyder’s selectivity groups and with several polarity indices. Visualization under UV 254 nm and 366 nm. Densitometry scanning at 254 nm in absorption mode, and at 366 nm in a fluorescence mode (mercury lamp 366 nm, with wavelength filter <400 nm). For selected bands, spectra were recorded in absorbance-reflectance mode (wavelength range 190 – 450 nm, deuterium and tungsten lamp). This procedure allowed 8 molecules to be selected for their better spot resolution and for their specific RF values (at least 3 different values distributed throughout the full RF range for each MP). The final composition of UHM was: thioxanthen-9-one (0.001 %), guanosine (0.05 %), phthalimide (0.2 %), 9-hydroxyfluorene, octrizole, paracetamol, sulisobenzone and thymidine (each 0.1 %), in methanol.
(Part 2) UHM validation: Afterwards, UHM was submitted again to a panel of HPTLC assays with always two MP: (A) toluene – methanol – diethylamine 8:1:1; (B) ethyl acetate – formic acid – water 15:1:1; and for each MP, the means, standard deviation and 95 % confidence intervals of the RF values were calculated. (a) UHM was validated for intermediate intra-laboratory precision, as well as for inter-laboratory reproducibility, with ΔRF 0.045. (b) The capacity of UHM to detect small variations was demonstrated by significant changes in at least some RF values, when separation was deliberately performed at different levels of relative humidity (0 %, 33 %, 75 %, 100 %), or with smaller humidity variations (7 % compared to 0–5 %, and 49 % compared to 33 %), or when performing vs. omitting the 10min chamber pre-saturation, or when modifying the MP (+/-10% of one solvent at each time). These response characteristics (the opposite of robustness) made UHM a powerful tool for SST. (c) Finally, UHM stability was studied with UHM aliquots under several storage conditions (-78 °C, -20 °C, 4 °C, room temperature, 45 °C; or 40 °C with 75 % relative humidity) and durations (2 weeks or 2 months). The densitometric peak profiles at 254 nm were compared to those of the fresh compounds, qualitatively (RF value, UV spectrum) and quantitatively (peak area). UHM was stable at room temperature or below, for 2 months (at higher temperature, guanosine, phthalimide and paracetamol degraded).
J Chromatogr A, 1619, 460945 (2020). Samples were lamotrigin as standard, or extracted with an oil-in-water microemulsion (10 µL butyl acetate, 4 mL n-butanol, 925 mg sodium dodecyl sulphate, 8.6 mL water) either from patients’ raw plasma (for separation from blood proteins) after spiking, or from commercial tablets dissolved in methanol. TLC on silica gel with a water-in-oil microemulsion of 9 mL butyl acetate, 1 mL n-butanol, 250 mg sodium dodecyl sulphate, 250 µL water. Both optimal microemulsions were predicted using Taguchi orthogonal array and Plackett-Burman design. Evaluation in UV 254 nm, quantification from the digital picture using four image processing software programs. For lamotrigin (hRF 24), limits of quantification were 170 ng for pure drug and 10 ng for spiked plasma. Linearity (in range 20–200 ng/spot) was directly obtained for the calibration curve in spiked plasma; however, for pure drug, linearity was obtained only when using log values of the calculated densities (300–3000 ng/spot).
J. Planar Chromatogr. 35, 349-362 (2022). HPTLC of 1‑acridinyl‑1,2,3‑triazole derivatives (compounds 6 to 10) on silica gel with chloroform - methanol 9:1 for compounds (6) to (8) and hexane - ethyl acetate 3:2 for compounds (9) and (10). Quantitative determination by absorbance measurement at 254 and fluorescence measurement at 254/>362 nm. The hRF values for (6) to (10) were 38, 29, 46, 36 and 65, respectively. Linearity was between 50 and 330 ng/zone for (6), 30 and 330 ng/zone for (7), 120 and 420 ng/zone for (8), 75 and 500 ng/zone for (9) and 100 and 500 ng/zone for (10). Interday and intra-day precisions were below 5 % (n=3). The LOD and LOQ were 16 and 48 ng/zone for (6), 11 and 33 ng/zone for (7), 51 and 155 ng/zone for (8), 21 and 63 ng/zone for (9) and 32 and 96 ng/zone for (10).
J. Planar Chromatogr. 35, 273-279 (2022). HPTLC of sweetener saccharin (1), acesulfame-K (2), neohesperidin (3), aspartame (4), stevioside (5), rebaudioside A (6), sucralose (7), and Na-cyclamate (8) in food samples on silica gel with ethyl acetate - methanol - acetic acid 5:1:1. Detection by dipping into the following reagent sequece, followed each by plate heating and image documentation or densitometry: 1) Primuline reagent (100 mg primuline in 20 mL water and 80 mL acetone), followed by solvent evaporation and detection at 366 nm; 2) ninhydrin reagent (0.3 g ninhydrin dissolved in 95 mL isopropyl alcohol and 5 mL glacial acetic acid), followed by heating at 120 °C for 5 min and detection at white light; 3) 2-naphthol sulfuric acid reagent (1 g 2-naphthol dissolved in 90 mL ethanol and 6 mL 50 % sulfuric acid added dropwise), followed by heating at 120 °C for 5 min and detection at white light. Quantification by absorbance measurement at 200 nm for (1), 230 nm for (2), 290 nm for (3), 500 nm for (4) to (7) and 650 nm for (8). Linearity was between 30 and 600 ng/zone for (5) and (6) and 800 and 1600 ng/zone for (8).
ALTEX - Alternatives to animal experimentation, 38(3), 387-397 (2021). Samples were standards of food contact contaminants with genotoxicity (4-nitroquinoline-1-oxide (NQO), aflatoxin B1, hexachloroethane, nitroso-ethylurea, phenformin, PhIP) or negative controls (alosetron, mannitol), and extracts of coated tin cans (extracted with n-hexane – acetone at 25°C for 16 h or by heating at 60 °C with ethanol 95 % for 240 h). HPTLC on RP18W layer, pretreated to harden the binder by heating 1 h at 120 °C, prewashed with methanol and with ethyl acetate and dried 4 min in cold air stream after each development. Application areas were focused to their upper edges by a two-fold elution with ethyl acetate, followed by 1 min drying in cold air stream. Development with toluene – ethyl acetate 8:5, followed by 5 min drying, neutralization with citrate buffer (pH 12) and 4 min drying. Effect-directed analysis for genotoxicity (SOS response – UMU-C test, using NQO as positive control) by immersion (speed 3.5 cm/s, time 3 s) into Salmonella typhimurium suspension and, after 3 h incubation at 37 °C and 4 min drying in cold air stream, into one of two fluorogenic substrate solutions (methylumbelliferyl- vs. resorufin-galactopyranoside). After 1 h incubation at 37 °C, visualization of mutagenic compounds as (blue vs. red) fluorescent zones at FLD 366 nm, and densitometry performed with mercury lamp for fluorescence (at 366 / >400nm vs. 550 / >580 nm, respectively). Further validation experiments, including spiking extracts with NQO, were performed showing good mean reproducibility, no quenching or other matrix effects. Lowest effective concentration of NQO was 0.53 nM (20 pg/band), 176 times lower than in the corresponding microtiter plate assays.
ALTEX - Alternatives to animal experimentation, 38(3), 387-397 (2021). Samples were standards of food contact contaminants with genotoxicity (4-nitroquinoline-1-oxide (NQO), aflatoxin B1, hexachloroethane, nitroso-ethylurea, phenformin, PhIP) or negative controls (alosetron, mannitol), and extracts of coated tin cans (extracted with n-hexane – acetone at 25°C for 16 h or by heating at 60 °C with ethanol 95 % for 240 h). HPTLC on RP18W layer, pretreated to harden the binder by heating 1 h at 120 °C, prewashed with methanol and with ethyl acetate and dried 4 min in cold air stream after each development. Application areas were focused to their upper edges by a two-fold elution with ethyl acetate, followed by 1 min drying in cold air stream. Development with toluene – ethyl acetate 8:5, followed by 5 min drying, neutralization with citrate buffer (pH 12) and 4 min drying. Effect-directed analysis for genotoxicity (SOS response – UMU-C test, using NQO as positive control) by immersion (speed 3.5 cm/s, time 3 s) into Salmonella typhimurium suspension and, after 3 h incubation at 37 °C and 4 min drying in cold air stream, into one of two fluorogenic substrate solutions (methylumbelliferyl- vs. resorufin-galactopyranoside). After 1 h incubation at 37 °C, visualization of mutagenic compounds as (blue vs. red) fluorescent zones at FLD 366 nm, and densitometry performed with mercury lamp for fluorescence (at 366 / >400nm vs. 550 / >580 nm, respectively). Further validation experiments, including spiking extracts with NQO, were performed showing good mean reproducibility, no quenching or other matrix effects. Lowest effective concentration of NQO was 0.53 nM (20 pg/band), 176 times lower than in the corresponding microtiter plate assays.
J Chromatogr A, 1605, 460366 (2019). Samples were standards and complex mixtures of non-ribosomally synthesized cyclic lipopeptides (CLPs) from Bacillus strains (Bacillaceae) found in soil or in manure: B. amyloliquefaciens (SS-12.6, SS-13.1, SS-27.2, SS-38.4) and B. pumilus (SS-10.7). Two extraction methods were compared: ethyl acetate extraction (Ex1), and the acidic precipitation followed by methanol extraction (Ex2). HPTLC on silica gel with chloroform – methanol – water 65:25:4. Detection under white light, UV 254 nm and 366 nm. Absorption densitometry measured at 190 nm. Derivatization for peptides, amino acids and amino derivatives, by immersion into ninhydrin – collidine reagent (ninhydrin 0.3 %, collidine 5 %, acetic acid 5 %, in ethanol), followed by heating 5 min at 110 °C. Effect-directed analysis using automated immersion: A) for free radical (DPPH•) scavengers; B) for enzymatic inhibition (acetyl-cholinesterase, α-glucosidase); C) for activity against Gram-negative (Aliivibrio fischeri bioluminescence assay) or Gram-positive bacteria (Bacillus subtilis bioassay). Active bands were eluted with methanol through the oval elution head of a TLC-MS interface pump, into a quadrupole-Orbitrap mass spectrometer. Full scan mass spectra (m/z 200−2000) in positive and in negative ionization modes were recorded using heated electrospray ionization (HESI, spray voltage 3.5 kV, capillary temperature 270 °C). Active zones were assigned to be CLPs: iturin A, surfactin dimethyl-ester, and surfactin, fengycin and kurstakin homologues. Ex1 provided richer extracts compared to Ex2. Standards were seen to contain a free radical scavenging impurity.
J. Planar Chromatogr. 35, 51-59 (2022). HPTLC of codeine (1), paracetamol (2), p-aminophenol (3) and caffeine (4) on silica gel with chloroform - methanol - acetone - ammonia 80:10:20:1. Quantitative determination by absorbance measurement at 220 nm. The hRF values for (1) to (4) were 24, 38, 46 and 61, respectively. Linearity was between 0.3 and 120 µg/zone for (1) and (4) and 1 and 20 µg/zone for (2) and (3). Interday and intra-day precisions were below 1 % (n=3). The LOD and LOQ were 0.06 and 0.21 µg/zone for (1), 0.23 and 0.7 µg/zone for (2), 0.24 and 0.82 µg/zone for (3) and 0.07 and 0.82 µg/zone for (4), respectively. Average recovery was 101.4 % for (1), 100.1 % for (2), 98.9 % for (3) and 98.3 % for (4).